Difference between revisions of "Arithmetic crystal class"
From Online Dictionary of Crystallography
AndreAuthier (talk | contribs) |
AndreAuthier (talk | contribs) |
||
Line 4: | Line 4: | ||
=== Other languages === | === Other languages === | ||
− | Classes cristallines arithmétiques (''Fr''). Arithmetische Kristall Klassen (''Ge''). | + | Classes cristallines arithmétiques (''Fr''). Arithmetische Kristall Klassen (''Ge''). Clases cristallinas aritméticas (''Sp''). |
− | |||
== Definition == | == Definition == | ||
+ | The arithmetic crystal classes are obtained in an elementary fashion by combining the geometrical crystal classes and the corrresponding types of Bravais lattices. For instance, in the monoclinic system, there are three geometric crystal classes, 2, ''m'' and 2/''m'', and two types of Bravais lattices, ''P'' and ''C''. There are therefore six monoclinic arithmetic crystal classes. Their symbols are obtained by juxtaposing the symbol of the geometric class and that of the Bravais lattice, in that order: 2''P'', 2''C'', ''mP'', ''mC'', 2/''mP'', 2/''mC'' (note that in the space group symbol the order is inversed: ''P''2, ''C''2, etc... | ||
<table border cellspacing=0 cellpadding=5 align=center> | <table border cellspacing=0 cellpadding=5 align=center> | ||
<caption align=top> '''Three-dimensional arithmetic crystal classes.''' </caption> | <caption align=top> '''Three-dimensional arithmetic crystal classes.''' </caption> |
Revision as of 08:28, 29 January 2006
Arithmetic crystal classes
Other languages
Classes cristallines arithmétiques (Fr). Arithmetische Kristall Klassen (Ge). Clases cristallinas aritméticas (Sp).
Definition
The arithmetic crystal classes are obtained in an elementary fashion by combining the geometrical crystal classes and the corrresponding types of Bravais lattices. For instance, in the monoclinic system, there are three geometric crystal classes, 2, m and 2/m, and two types of Bravais lattices, P and C. There are therefore six monoclinic arithmetic crystal classes. Their symbols are obtained by juxtaposing the symbol of the geometric class and that of the Bravais lattice, in that order: 2P, 2C, mP, mC, 2/mP, 2/mC (note that in the space group symbol the order is inversed: P2, C2, etc...
Crystal systems | Crystal class | ||
---|---|---|---|
Geometric | Arithmetic | ||
Number | Symbol | ||
Triclinic | [math] 1 [/math] | 1 | [math] 1P [/math] |
[math] {\bar 1} [/math] | 2 | [math] {\bar 1}P [/math] | |
Monoclinic | [math] 2 [/math] | 3 | [math] 2P [/math] |
[math] m [/math] | 4 | [math] 2C [/math] | |
5 | [math] mP [/math] | ||
[math] 2/m [/math] | 6 | [math] mC [/math] | |
7 | [math] 2/m P [/math] | ||
8 | [math] 2/m C [/math] | ||
Orthorhombic | [math] 222 [/math] | 9 | [math] 222 P [/math] |
10 | [math] 222 C [/math] | ||
11 | [math] 222 F [/math] | ||
12 | [math] 222 I [/math] | ||
[math] mm [/math] | 13 | [math] mm2 P [/math] | |
14 | [math] mm2 C [/math] | ||
15 | [math] 2mmC [/math] | ||
[math] (Amm2) [/math] | |||
16 | [math] mm2F [/math] | ||
17 | [math] mm2I [/math] | ||
[math] mmm [/math] | 18 | [math] mmmP [/math] | |
19 | [math] mmmC [/math] | ||
20 | [math] mmmF [/math] | ||
21 | [math] mmmI [/math] | ||
Tetragonal | [math] 4 [/math] | 22 | [math] 4P [/math] |
23 | [math] 4I [/math] | ||
[math] {\bar 4} [/math] | 24 | [math] {\bar 4}P [/math] | |
25 | [math] {\bar 4}I [/math] | ||
[math] 4/m [/math] | 26 | [math] 4/mP [/math] | |
27 | [math] 4/mI [/math] | ||
[math] 422 [/math] | 28 | [math] 422P [/math] | |
29 | [math] 422I [/math] | ||
[math] 4mm [/math] | 30 | [math] 4mmP [/math] | |
31 | [math] 4mmI [/math] | ||
[math] {\bar 4}m [/math] | 32 | [math] {\bar 4}2mP [/math] | |
33 | [math] {\bar 4}m2P [/math] | ||
34 | [math] {\bar 4}m2I [/math] | ||
35 | [math] {\bar 4}2mI [/math] | ||
[math] 4/mmm [/math] | 36 | [math] 4/mmmP [/math] | |
37 | [math] 4/mmmI [/math] | ||
Trigonal | [math] 3 [/math] | 38 | [math] 3P [/math] |
39 | [math] 3R [/math] | ||
[math] {\bar 3} [/math] | 40 | [math] {\bar 3}P [/math] | |
41 | [math] {\bar 3}R [/math] | ||
[math] 32 [/math] | 42 | [math] 312P [/math] | |
43 | [math] 321P [/math] | ||
44 | [math] 32R [/math] | ||
[math] 3m [/math] | 45 | [math] 3m1P [/math] | |
46 | [math] 31mP [/math] | ||
47 | [math] 3mR [/math] | ||
[math] {\bar 3}m [/math] | 48 | [math] {\bar 3}1mP [/math] | |
49 | [math] {\bar 3}m1P [/math] | ||
50 | [math] {\bar 3}mR [/math] | ||
Hexagonal | [math] 6 [/math] | 51 | [math] 6P [/math] |
[math] {\bar 6} [/math] | 52 | [math] {\bar 6}P [/math] | |
[math] 6/m [/math] | 53 | [math] 6/mP [/math] | |
[math] 622 [/math] | 54 | [math] 622P [/math] | |
[math] 6mm [/math] | 55 | [math] 6mmP [/math] | |
[math] {\bar 6}m [/math] | 56 | [math] {\bar 6}2mP [/math] | |
57 | [math] {\bar 6}m2P [/math] | ||
[math] 6/mmm [/math] | 58 | [math] 6/mmm [/math] | |
Cubic | [math] 23 [/math] | 59 | [math] 23P [/math] |
60 | [math] 23F [/math] | ||
61 | [math] 23I [/math] | ||
[math] m{\bar 3} [/math] | 62 | [math] m{\bar 3}P [/math] | |
63 | [math] m{\bar 3}F [/math] | ||
64 | [math] m{\bar 3}I [/math] | ||
[math] 432 [/math] | 65 | [math] 432P [/math] | |
66 | [math] 432F [/math] | ||
67 | [math] 432I [/math] | ||
[math] {\bar 4}3m [/math] | 68 | [math] {\bar 4}3m P [/math] | |
69 | [math] {\bar 4}3m F [/math] | ||
70 | [math] {\bar 4}3m I [/math] | ||
[math] m{\bar 3}m [/math] | 71 | [math] m{\bar 3}mP [/math] | |
72 | [math] m{\bar 3}mF [/math] | ||
73 | [math] m{\bar 3}mI [/math] |
See also
Section 8.2.3 of International Tables of Crystallography, Volume A
Sections 1.3.4 and 1.5.3 of International Tables of Crystallography, Volume B
Section 1.4 of International Tables of Crystallography, Volume C