Difference between revisions of "Zone axis"
From Online Dictionary of Crystallography
AndreAuthier (talk | contribs) |
|||
Line 1: | Line 1: | ||
<Font color="blue">Axe de zone</Font> (''Fr''). <Font color="red">Zonenachse</Font> (''Ge''). | <Font color="blue">Axe de zone</Font> (''Fr''). <Font color="red">Zonenachse</Font> (''Ge''). | ||
− | <Font color="green">Eje de zona</Font> (''Sp''). <Font color="purple">Ось зоны</Font> (''Ru''). | + | <Font color="green">Eje de zona</Font> (''Sp''). <Font color="purple">Ось зоны</Font> (''Ru'').<Font color="black"> Asse di zona </Font>(''It'') |
+ | |||
__TOC__ | __TOC__ |
Revision as of 14:12, 28 March 2006
Axe de zone (Fr). Zonenachse (Ge). Eje de zona (Sp). Ось зоны (Ru). Asse di zona (It)
Contents
[hide]Definition
A zone axis is a lattice row parallel to the intersection of two (or more) families of lattices planes. It is denoted by [u v w]. A zone axis [u v w] is parallel to a family of lattice planes of Miller indices (hkl) if:
uh + vk + wl = 0
The indices of the zone axis defined by two lattice planes ( h_1, k_1, l_1 ), ( h_2, k_2, l_2) are given by:
{u\over { \begin{vmatrix} k_1 & l_1\\ k_2 & l_2\\ \end{vmatrix}}} = {v\over { \begin{vmatrix} l_1 & h_1\\ l_2 & h_2\\ \end{vmatrix}}} = {w\over { \begin{vmatrix} h_1 & k_1\\ h_2 & k_2\\ \end{vmatrix}} }
Three lattice planes have a common zone axis (are in zone) if their Miller indices ( h_1, k_1, l_1 ), ( h_2, k_2, l_2), ( h_3, k_3, l_3) satisfy the relation:
\begin{vmatrix} h_1 & k_1 & l_1\\ h_2 & k_2 & l_2\\ h_3 & k_3 & l_3\\ \end{vmatrix} = 0
See also
Miller indices
reciprocal lattice