Actions

Difference between revisions of "Cylindrical system"

From Online Dictionary of Crystallography

Line 31: Line 31:
 
</tr>
 
</tr>
 
</table>
 
</table>
 +
 +
 +
 +
 +
[[Image:CylindricalSystem.gif|center]]
  
 
Note that <math> A_\infty M</math> represents the symmetry of a force, or of an electric field and that <math> {A_\infty \over M}C</math> represents the symmetry of a magnetic field (Curie 1894), while <math> {A_\infty \over M} {\infty A_2 \over \infty M} C</math> represents the symmetry of a uniaxial compression.
 
Note that <math> A_\infty M</math> represents the symmetry of a force, or of an electric field and that <math> {A_\infty \over M}C</math> represents the symmetry of a magnetic field (Curie 1894), while <math> {A_\infty \over M} {\infty A_2 \over \infty M} C</math> represents the symmetry of a uniaxial compression.

Revision as of 08:50, 12 May 2006

Système cylindrique (Fr) Sistema cylindrico (It).

Definition

The cylindrical system contains non-crystallographic point groups with one axis of revolution (or isotropy axis). There are five groups in the spherical system:

Hermann-Mauguin symbol Short Hermann-Mauguin symbol Schönfliess symbol order of the groupgeneral form
[math] A_\infty[/math] [math]\infty[/math] [math]C_\infty [/math] [math] \infty[/math] rotating cone
[math] {A_\infty \over M}C[/math] [math] {\bar \infty}[/math] [math]C_{\infty h} \equiv S_{\infty} \equiv C_{\infty i}[/math] [math] \infty[/math] rotating finite cylinder
[math] A_\infty \infty A_2[/math] [math] \infty 2[/math] [math]D_{\infty }[/math] [math] \infty[/math] finite cylinder
submitted to equal and
opposite torques
[math] A_\infty M[/math] [math]\infty m[/math] [math]C_{\infty v}[/math] [math] \infty[/math] stationary cone
[math] {A_\infty \over M} {\infty A_2 \over \infty M} C[/math] [math] {\bar \infty}m \equiv {\bar \infty} {2\over m}[/math] [math]D_{\infty h} \equiv D_{\infty d}[/math] [math] \infty[/math] stationary finite cylinder



CylindricalSystem.gif

Note that [math] A_\infty M[/math] represents the symmetry of a force, or of an electric field and that [math] {A_\infty \over M}C[/math] represents the symmetry of a magnetic field (Curie 1894), while [math] {A_\infty \over M} {\infty A_2 \over \infty M} C[/math] represents the symmetry of a uniaxial compression.

History

The groups containing isotropy axes were introduced by P. Curie (1859-1906) in order to describe the symmetry of physical systems (Curie P. (1884). Sur les questions d'ordre: répétitions. Bull. Soc. Fr. Minéral., 7, 89-110; Curie P. (1894). Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J. Phys. (Paris), 3, 393-415.).

See also

Curie laws
spherical system
Section 10.1.4 of International Tables of Crystallography, Volume A
Section 1.1.4 of International Tables of Crystallography, Volume D