Actions

Difference between revisions of "Normal subgroup"

From Online Dictionary of Crystallography

 
Line 1: Line 1:
<font color="blue"> Sousgroupe normal </font> (''Fr''); <font color="black"> Sottogruppo normale </font> (''It'').
+
<font color="blue"> Sousgroupe normal </font> (''Fr''); <font color="black"> Sottogruppo normale </font> (''It''); <font color="purple"> 正規部分群 </font> (''Ja'')
  
 
== Definition ==
 
== Definition ==
A subgroup H of a group G is '''normal''' if gH = Hg for any g &isin;G. Equivalently, H &sub; G is normal if and only if gHg<sup>-1</sup> = H for any g &isin;G, i.e., if and only if each [[conjugacy class]] of G is either entirely inside H or entirely outside H.
+
A [[subgroup]] H of a group G is '''normal''' if gH = Hg for any g &isin;G. Equivalently, H &sub; G is normal if and only if gHg<sup>-1</sup> = H for any g &isin;G, i.e., if and only if each [[conjugacy class]] of G is either entirely inside H or entirely outside H.
  
 
[[Category: Fundamental crystallography]]
 
[[Category: Fundamental crystallography]]

Revision as of 15:48, 27 February 2007

Sousgroupe normal (Fr); Sottogruppo normale (It); 正規部分群 (Ja)

Definition

A subgroup H of a group G is normal if gH = Hg for any g ∈G. Equivalently, H ⊂ G is normal if and only if gHg-1 = H for any g ∈G, i.e., if and only if each conjugacy class of G is either entirely inside H or entirely outside H.