Actions

Difference between revisions of "Lattice"

From Online Dictionary of Crystallography

(initial definition)
 
m (Ja)
Line 1: Line 1:
<Font color="blue">R&eacute;seau</Font>(''Fr''); <Font color="red">Gitter</Font> (''Ge''); <Font color="black">Reticolo</Font>(''It'').
+
<Font color="blue">R&eacute;seau</Font>(''Fr''); <Font color="red">Gitter</Font> (''Ge''); <Font color="black">Reticolo</Font>(''It''); <font color="purple">格子</font> (''Ja'').
  
  
Line 10: Line 10:
 
== See also ==
 
== See also ==
  
[[crystallographic basis]]<br>
+
*[[crystallographic basis]]<br>
Sections 8.1 and 9.1 of ''International Tables of Crystallography, Volume A''
+
*Sections 8.1 and 9.1 of ''International Tables of Crystallography, Volume A''
  
 
----
 
----
  
 
[[Category:Fundamental crystallography]]<br>
 
[[Category:Fundamental crystallography]]<br>

Revision as of 14:02, 2 April 2009

Réseau(Fr); Gitter (Ge); Reticolo(It); 格子 (Ja).


Definition

A lattice in the vector space Vn is the set of all integral linear combinations t = u1a1 + u2a2 + ... + ukak of a system (a1, a2, ... , ak) of linearly independent vectors in Vn.

If k = n, i.e. if the linearly independent system is a basis of Vn, the lattice is often called a full lattice. In crystallography, lattices are almost always full lattices, therefore the attribute "full" is usually suppressed.

See also