Actions

Difference between revisions of "Order (group theory)"

From Online Dictionary of Crystallography

(involution)
m (languages (Ja))
Line 1: Line 1:
<font color="blue">Ordre</font> (''Fr''); <font color="red">Ordnung</font> (''Ge''); <font color="green">Orden</font> (''Sp''); <font color="black">Ordine</font> (''It'').
+
<font color="blue">Ordre</font> (''Fr''); <font color="red">Ordnung</font> (''Ge''); <font color="green">Orden</font> (''Sp''); <font color="black">Ordine</font> (''It''); <font color="purple">位数</font> (''Ja'').
  
  

Revision as of 11:11, 5 June 2014

Ordre (Fr); Ordnung (Ge); Orden (Sp); Ordine (It); 位数 (Ja).


If G is a group consisting of a finite number of elements, this number of elements is the order of G. For example, the point group m3m has order 48.

For an element g of a (not necessarily finite) group G, the order of g is the smallest integer n such that gn is the identity element of G. If no such integer exists, g is of infinite order. For example, the rotoinversion 3 has order 6 and a translation has infinite order. An element of order 2 is called an involution.