Actions

Difference between revisions of "Factor group"

From Online Dictionary of Crystallography

m (Example)
m (synonims)
Line 1: Line 1:
<font color="blue">Groupe facteur</font> (''Fr'').; <font color="red">Faktorgruppe</font> (''Ge''). <font color="green">Grupo cociente</font> (''Sp''). <font color="black">Gruppo fattore</font> (''It''). <font color="purple">剰余群(商群)</font> (''Ja'').
+
<font color="blue">Groupe facteur</font> (''Fr'').; <font color="red">Faktorgruppe</font> (''Ge''). <font color="green">Grupo cociente</font> (''Sp''). <font color="black">Gruppo fattore</font> (''It''). <font color="purple">因子群 (商群、剰余群)</font> (''Ja'').
  
 
==Definition==
 
==Definition==
Let N be a [[normal subgroup]] of a group G. The '''factor group''' or '''quotient group''' G/N is the set of all left [[coset]]s of N in G, i.e.:
+
Let N be a [[normal subgroup]] of a group G. The '''factor group''' or '''quotient group''' or '''residue class group''' G/N is the set of all left [[coset]]s of N in G, i.e.:
  
 
:<math>G/N = \{ aN : a \isin G \}.</math>
 
:<math>G/N = \{ aN : a \isin G \}.</math>

Revision as of 13:55, 14 March 2015

Groupe facteur (Fr).; Faktorgruppe (Ge). Grupo cociente (Sp). Gruppo fattore (It). 因子群 (商群、剰余群) (Ja).

Definition

Let N be a normal subgroup of a group G. The factor group or quotient group or residue class group G/N is the set of all left cosets of N in G, i.e.:

[math]G/N = \{ aN : a \isin G \}.[/math]

For each aN and bN in G/N, the product of aN and bN is (aN)(bN), which is still a left coset. In fact, because N is normal:

(aN)(bN) = a(Nb)N = a(bN)N = (ab)NN = (ab)N.

The inverse of an element aN of G/N is a-1N.

Example

The factor group G/T of a space group G and its translation subgroup is isomorphic to the point group P of G.

See also

Chapter 8 in the International Tables of Crystallography, Volume A