Actions

Difference between revisions of "Space group"

From Online Dictionary of Crystallography

(normal subgroup)
m (internal link)
Line 1: Line 1:
 
<font color="blue">Groupe d'espace</font> (''Fr''); <font color="red">Raumgruppe</font> (''Ge''); <font color="black">Gruppo spaziale</font> (''It''); <font color="purple">空間群</font> (''Ja'').
 
<font color="blue">Groupe d'espace</font> (''Fr''); <font color="red">Raumgruppe</font> (''Ge''); <font color="black">Gruppo spaziale</font> (''It''); <font color="purple">空間群</font> (''Ja'').
  
The symmetry group of a three-dimensional crystal pattern is called its '''space group'''. In ''E''<sup>2</sup>, the symmetry group of a two-dimensional crystal pattern is called its '''plane group'''. In ''E''<sup>1</sup>, the symmetry group of a one-dimensional crystal pattern is called its '''line group'''.
+
The symmetry group of a three-dimensional [[crystal pattern]] is called its '''space group'''. In ''E''<sup>2</sup>, the symmetry group of a two-dimensional crystal pattern is called its '''plane group'''. In ''E''<sup>1</sup>, the symmetry group of a one-dimensional crystal pattern is called its '''line group'''.
  
 
To each crystal pattern belongs an infinite set of translations '''T''', which are symmetry operations of that pattern. The set of all '''T''' forms a group known as the '''translation subgroup''' T of the space group G of the crystal pattern. T is an [[Abelian group]] and a [[normal subgroup]] of the space group.
 
To each crystal pattern belongs an infinite set of translations '''T''', which are symmetry operations of that pattern. The set of all '''T''' forms a group known as the '''translation subgroup''' T of the space group G of the crystal pattern. T is an [[Abelian group]] and a [[normal subgroup]] of the space group.

Revision as of 14:35, 22 December 2016

Groupe d'espace (Fr); Raumgruppe (Ge); Gruppo spaziale (It); 空間群 (Ja).

The symmetry group of a three-dimensional crystal pattern is called its space group. In E2, the symmetry group of a two-dimensional crystal pattern is called its plane group. In E1, the symmetry group of a one-dimensional crystal pattern is called its line group.

To each crystal pattern belongs an infinite set of translations T, which are symmetry operations of that pattern. The set of all T forms a group known as the translation subgroup T of the space group G of the crystal pattern. T is an Abelian group and a normal subgroup of the space group.

See also