Actions

Difference between revisions of "Cylindrical system"

From Online Dictionary of Crystallography

m
m (See also: 6th edition of ITA)
Line 46: Line 46:
 
[[Curie laws]]<br>
 
[[Curie laws]]<br>
 
[[spherical system]]<br>
 
[[spherical system]]<br>
Section 10.1.4 of ''International Tables of Crystallography, Volume A''<br>
+
Section 3.2.1.4 of ''International Tables of Crystallography, Volume A'', 6<sup>th</sup> edition<br>
 
Section 1.1.4 of ''International Tables of Crystallography, Volume D''<br>
 
Section 1.1.4 of ''International Tables of Crystallography, Volume D''<br>
  
 
[[Category:Fundamental crystallography]]<br>
 
[[Category:Fundamental crystallography]]<br>
 
[[Category:Physical properties of crystals]]<br>
 
[[Category:Physical properties of crystals]]<br>

Revision as of 15:18, 10 April 2017

Système cylindrique (Fr) Sistema cilindrico (It).

Definition

The cylindrical system contains non-crystallographic point groups with one axis of revolution (or isotropy axis). There are five groups in the spherical system:

Hermann-Mauguin symbol Short Hermann-Mauguin symbol Schönfliess symbol order of the groupgeneral form
A_\infty \infty C_\infty \infty rotating cone
{A_\infty \over M}C {\bar \infty} C_{\infty h} \equiv S_{\infty} \equiv C_{\infty i} \infty rotating finite cylinder
A_\infty \infty A_2 \infty 2 D_{\infty } \infty finite cylinder
submitted to equal and
opposite torques
A_\infty M \infty m C_{\infty v} \infty stationary cone
{A_\infty \over M} {\infty A_2 \over \infty M} C {\bar \infty}m \equiv {\bar \infty} {2\over m} D_{\infty h} \equiv D_{\infty d} \infty stationary finite cylinder


CylindricalSystem.gif

Note that A_\infty M represents the symmetry of a force, or of an electric field and that {A_\infty \over M}C represents the symmetry of a magnetic field (Curie 1894), while {A_\infty \over M} {\infty A_2 \over \infty M} C represents the symmetry of a uniaxial compression.

History

The groups containing isotropy axes were introduced by P. Curie (1859-1906) in order to describe the symmetry of physical systems (Curie P. (1884). Sur les questions d'ordre: répétitions. Bull. Soc. Fr. Minéral., 7, 89-110; Curie P. (1894). Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J. Phys. (Paris), 3, 393-415.).

See also

Curie laws
spherical system
Section 3.2.1.4 of International Tables of Crystallography, Volume A, 6th edition
Section 1.1.4 of International Tables of Crystallography, Volume D