Difference between revisions of "Cylindrical system"
From Online Dictionary of Crystallography
BrianMcMahon (talk | contribs) m |
m (→See also: 6th edition of ITA) |
||
Line 46: | Line 46: | ||
[[Curie laws]]<br> | [[Curie laws]]<br> | ||
[[spherical system]]<br> | [[spherical system]]<br> | ||
− | Section | + | Section 3.2.1.4 of ''International Tables of Crystallography, Volume A'', 6<sup>th</sup> edition<br> |
Section 1.1.4 of ''International Tables of Crystallography, Volume D''<br> | Section 1.1.4 of ''International Tables of Crystallography, Volume D''<br> | ||
[[Category:Fundamental crystallography]]<br> | [[Category:Fundamental crystallography]]<br> | ||
[[Category:Physical properties of crystals]]<br> | [[Category:Physical properties of crystals]]<br> |
Revision as of 15:18, 10 April 2017
Système cylindrique (Fr) Sistema cilindrico (It).
Definition
The cylindrical system contains non-crystallographic point groups with one axis of revolution (or isotropy axis). There are five groups in the spherical system:
Hermann-Mauguin symbol | Short Hermann-Mauguin symbol | Schönfliess symbol | order of the group | general form |
---|---|---|---|---|
A_\infty | \infty | C_\infty | \infty | rotating cone |
{A_\infty \over M}C | {\bar \infty} | C_{\infty h} \equiv S_{\infty} \equiv C_{\infty i} | \infty | rotating finite cylinder |
A_\infty \infty A_2 | \infty 2 | D_{\infty } | \infty | finite cylinder submitted to equal and opposite torques |
A_\infty M | \infty m | C_{\infty v} | \infty | stationary cone |
{A_\infty \over M} {\infty A_2 \over \infty M} C | {\bar \infty}m \equiv {\bar \infty} {2\over m} | D_{\infty h} \equiv D_{\infty d} | \infty | stationary finite cylinder |
Note that A_\infty M represents the symmetry of a force, or of an electric field and that {A_\infty \over M}C represents the symmetry of a magnetic field (Curie 1894), while {A_\infty \over M} {\infty A_2 \over \infty M} C represents the symmetry of a uniaxial compression.
History
The groups containing isotropy axes were introduced by P. Curie (1859-1906) in order to describe the symmetry of physical systems (Curie P. (1884). Sur les questions d'ordre: répétitions. Bull. Soc. Fr. Minéral., 7, 89-110; Curie P. (1894). Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J. Phys. (Paris), 3, 393-415.).
See also
Curie laws
spherical system
Section 3.2.1.4 of International Tables of Crystallography, Volume A, 6th edition
Section 1.1.4 of International Tables of Crystallography, Volume D