Actions

Difference between revisions of "Vector space"

From Online Dictionary of Crystallography

m (typos (missing or extra spaces in lang.))
m (See also: ITA 6th edition)
Line 11: Line 11:
  
 
==See also==
 
==See also==
 
+
* Section 1.3.2 in the ''International Tables for Crystallography Volume A'', 6<sup>th</sup> edition
* Chapter 8.1 in the ''International Tables for Crystallography Volume A''
 
 
* [http://www.iucr.org/iucr-top/comm/cteach/pamphlets/22/index.html Matrices, Mappings and Crystallographic Symmetry], teaching pamphlet No. 22 of the [[International Union of Crystallography]]
 
* [http://www.iucr.org/iucr-top/comm/cteach/pamphlets/22/index.html Matrices, Mappings and Crystallographic Symmetry], teaching pamphlet No. 22 of the [[International Union of Crystallography]]
  
 
[[Category:Fundamental crystallography]]
 
[[Category:Fundamental crystallography]]

Revision as of 16:58, 11 April 2017

Espace vectoriel (Fr); Spazio vettoriale (It); ベクトル空間 (Ja)

For each pair of points X and Y in point space one can draw a vector r from X to Y. The set of all vectors forms a vector space. The vector space has no origin but instead there is the zero vector which is obtained by connecting any point X with itself. The vector r has a length which is designed by |r| = r, where r is a non–negative real number. This number is also called the absolute value of the vector. The maximal number of linearly independent vectors in a vector space is called the dimension of the space.

An essential difference between the behaviour of vectors and points is provided by the changes in their coefficients and coordinates if a different origin in point space is chosen. The coordinates of the points change when moving from an origin to the other one. However, the coefficients of the vector r do not change.

The point space is a dual of the vector space because to each vector in vector space a pair of points in point space can be associated.

Face normals, translation vectors, Patterson vectors and reciprocal lattice vectors are elements of vector space.

See also