Actions

Difference between revisions of "Atomic modulation function"

From Online Dictionary of Crystallography

m (internal link)
m (Style edits to align with printed edition)
Line 5: Line 5:
 
A [[modulated crystal structure]] is a [[crystal pattern|structure]] that may be obtained from a crystalline system with [[space group]] symmetry, and therefore with [[lattice]] periodicity, by a regular displacement of atoms ([[displacive modulation]]) and/or change in the occupation probability of a site in the basic structure. The deviation from the positions in the basic structure are given by
 
A [[modulated crystal structure]] is a [[crystal pattern|structure]] that may be obtained from a crystalline system with [[space group]] symmetry, and therefore with [[lattice]] periodicity, by a regular displacement of atoms ([[displacive modulation]]) and/or change in the occupation probability of a site in the basic structure. The deviation from the positions in the basic structure are given by
  
<math>r(n,j) = n~+~r_j+u_j((n+r_j).</math>
+
<math>r(n,j) = n~+~r_j+u_j (n+r_j).</math>
  
 
The occupation probability to find an atom of species ''A'' at the position <math>n+r_j</math>
 
The occupation probability to find an atom of species ''A'' at the position <math>n+r_j</math>
is <math>p_A(n,j)</math>, where the sum over the species of the functions <math>p_A</math>
+
is <math>p_A(n, j)</math>, where the sum over the species of the functions <math>p_A</math>
 
is one. Instead of a different species, one may have a vacancy. The functions
 
is one. Instead of a different species, one may have a vacancy. The functions
<math>u(n,j)</math> and <math>p_A(n,j)</math> are the  ''atomic modulation functions''.
+
<math>u(n, j)</math> and <math>p_A(n, j)</math> are the  ''atomic modulation functions''.
 
For a crystal they should have Fourier modules of finite rank,  ''i.e''. the
 
For a crystal they should have Fourier modules of finite rank,  ''i.e''. the
 
functions have Fourier transforms with delta peaks on wave vectors  '''k''' of the form
 
functions have Fourier transforms with delta peaks on wave vectors  '''k''' of the form
  
<math>k~=~\sum_{i=1}^n h_i a_i^*,~~(h_i~~{\rm integers},~n~{\rm finite}.)</math>
+
<math>k~=~\sum_{i=1}^n h_i a_i^*~~(h_i~~{\rm integers},~n~{\rm finite}).</math>
  
 
Modulation functions may be continuous or discontinuous.
 
Modulation functions may be continuous or discontinuous.
  
 
[[Category: Fundamental crystallography]]
 
[[Category: Fundamental crystallography]]

Revision as of 12:29, 12 May 2017

Fonction de modulation atomique (Fr). Funzione di modulazione atomica (It). 原子変調関数 (Ja).

Definition

A modulated crystal structure is a structure that may be obtained from a crystalline system with space group symmetry, and therefore with lattice periodicity, by a regular displacement of atoms (displacive modulation) and/or change in the occupation probability of a site in the basic structure. The deviation from the positions in the basic structure are given by

[math]r(n,j) = n~+~r_j+u_j (n+r_j).[/math]

The occupation probability to find an atom of species A at the position [math]n+r_j[/math] is [math]p_A(n, j)[/math], where the sum over the species of the functions [math]p_A[/math] is one. Instead of a different species, one may have a vacancy. The functions [math]u(n, j)[/math] and [math]p_A(n, j)[/math] are the atomic modulation functions. For a crystal they should have Fourier modules of finite rank, i.e. the functions have Fourier transforms with delta peaks on wave vectors k of the form

[math]k~=~\sum_{i=1}^n h_i a_i^*~~(h_i~~{\rm integers},~n~{\rm finite}).[/math]

Modulation functions may be continuous or discontinuous.