Difference between revisions of "Hemihedry"
From Online Dictionary of Crystallography
m (→See also: 6th edition of ITA) |
BrianMcMahon (talk | contribs) m (Style edits to align with printed edition) |
||
Line 1: | Line 1: | ||
− | <font color="blue">Hémiédrie </font>(''Fr''). <Font color="green"> Hemiedria </Font>(''Sp''). <Font color="black"> Emiedria </Font>(''It''). <Font color="purple"> 半面像 </Font>(''Ja'') | + | <font color="blue">Hémiédrie </font>(''Fr''). <Font color="green"> Hemiedria </Font>(''Sp''). <Font color="black"> Emiedria </Font>(''It''). <Font color="purple"> 半面像 </Font>(''Ja''). |
Line 7: | Line 7: | ||
== See also == | == See also == | ||
− | * | + | *Chapter 3.2.1.1 of ''International Tables for Crystallography, Volume A'', 6th edition |
[[Category:Fundamental crystallography]]<br> | [[Category:Fundamental crystallography]]<br> | ||
[[Category:Morphological crystallography]] | [[Category:Morphological crystallography]] |
Revision as of 13:56, 15 May 2017
Hémiédrie (Fr). Hemiedria (Sp). Emiedria (It). 半面像 (Ja).
Definition
The point group of a crystal is called hemihedry if it is a subgroup of index 2 of the point group of its lattice.
See also
- Chapter 3.2.1.1 of International Tables for Crystallography, Volume A, 6th edition