Actions

Difference between revisions of "Hemihedry"

From Online Dictionary of Crystallography

m (See also: 6th edition of ITA)
m (Style edits to align with printed edition)
Line 1: Line 1:
<font color="blue">Hémiédrie </font>(''Fr''). <Font color="green"> Hemiedria </Font>(''Sp''). <Font color="black"> Emiedria </Font>(''It''). <Font color="purple"> 半面像 </Font>(''Ja'')
+
<font color="blue">Hémiédrie </font>(''Fr''). <Font color="green"> Hemiedria </Font>(''Sp''). <Font color="black"> Emiedria </Font>(''It''). <Font color="purple"> 半面像 </Font>(''Ja'').
  
  
Line 7: Line 7:
  
 
== See also ==
 
== See also ==
*Section 3.2.1.1 of ''International Tables of Crystallography, Volume A'', 6<sup>th</sup> edition
+
*Chapter 3.2.1.1 of ''International Tables for Crystallography, Volume A'', 6th edition
  
  
 
[[Category:Fundamental crystallography]]<br>
 
[[Category:Fundamental crystallography]]<br>
 
[[Category:Morphological crystallography]]
 
[[Category:Morphological crystallography]]

Revision as of 13:56, 15 May 2017

Hémiédrie (Fr). Hemiedria (Sp). Emiedria (It). 半面像 (Ja).


Definition

The point group of a crystal is called hemihedry if it is a subgroup of index 2 of the point group of its lattice.

See also

  • Chapter 3.2.1.1 of International Tables for Crystallography, Volume A, 6th edition