Difference between revisions of "Holohedry"
From Online Dictionary of Crystallography
m (→See also: 6th edition of ITA) |
BrianMcMahon (talk | contribs) m (Style edits to align with printed edition) |
||
Line 1: | Line 1: | ||
− | <font color="blue">Holoédrie </font>(''Fr''). <Font color="green"> Holedria </Font>(''Sp''). <Font color="black"> Oloedria </Font>(''It''). <Font color="purple"> 完面像 </Font>(''Ja'') | + | <font color="blue">Holoédrie </font>(''Fr''). <Font color="green"> Holedria </Font>(''Sp''). <Font color="black"> Oloedria </Font>(''It''). <Font color="purple"> 完面像 </Font>(''Ja''). |
Line 7: | Line 7: | ||
== See also == | == See also == | ||
− | * | + | *Chapter 3.2.1.1 of ''International Tables for Crystallography, Volume A'', 6th edition |
− | [[Category:Fundamental crystallography]] | + | [[Category:Fundamental crystallography]] |
[[Category:Morphological crystallography]] | [[Category:Morphological crystallography]] |
Revision as of 13:58, 15 May 2017
Holoédrie (Fr). Holedria (Sp). Oloedria (It). 完面像 (Ja).
Definition
The point group of a crystal is called holohedral if it is identical to the point group of its lattice. The corresponding geometric crystal class is called a holohedry. In the three-dimensional space, there are seven holohedries: [math] {\bar 1}, 2/m, mmm, {\bar 3}m, 4/m mm, 6/m mm, m{\bar 3}m[/math].
See also
- Chapter 3.2.1.1 of International Tables for Crystallography, Volume A, 6th edition