Actions

Difference between revisions of "Merohedry"

From Online Dictionary of Crystallography

m (See also: 6th edition of ITA)
m (Style edits to align with printed edition)
Line 1: Line 1:
<font color="blue">Mériédrie </font>(''Fr''). <Font color="green"> Meriedria </Font>(''Sp''). <Font color="black"> Meriedria </Font>(''It''). <Font color="purple"> 欠面像 </Font>(''Ja'')
+
<font color="blue">Mériédrie </font>(''Fr''). <Font color="green"> Meriedria </Font>(''Sp''). <Font color="black"> Meriedria </Font>(''It''). <Font color="purple"> 欠面像 </Font>(''Ja'').
  
 
== Definition ==
 
== Definition ==
  
The [[point group]] of a crystal is called merohedry if it is a [[subgroup]] of the point group of its lattice.
+
The [[point group]] of a crystal is called merohedry if it is a [[subgroup]] of the point group of its lattice. It is a hemihedry
 +
(tetartohedry, ogdohedry) if it is a subgroup of index 2 (4, 8) of the point group of its lattice.
  
 
== See also ==
 
== See also ==
 +
*[[Hemihedry]]
 
*[[Merohedral]]
 
*[[Merohedral]]
*Section 3.2.1 of ''International Tables of Crystallography, Volume A'', 6<sup>th</sup> edition
+
*[[Ogdohedry]]
 +
*[[Tetartohedry]]
 +
*Chapter 3.2.1 of ''International Tables for Crystallography, Volume A'', 6th edition
  
[[Category:Fundamental crystallography]]<br>
+
[[Category:Fundamental crystallography]]
 
[[Category:Morphological crystallography]]
 
[[Category:Morphological crystallography]]

Revision as of 16:29, 15 May 2017

Mériédrie (Fr). Meriedria (Sp). Meriedria (It). 欠面像 (Ja).

Definition

The point group of a crystal is called merohedry if it is a subgroup of the point group of its lattice. It is a hemihedry (tetartohedry, ogdohedry) if it is a subgroup of index 2 (4, 8) of the point group of its lattice.

See also