Difference between revisions of "Lattice"
From Online Dictionary of Crystallography
BrianMcMahon (talk | contribs) m (Style edits to align with printed edition) |
m (languages) |
||
Line 1: | Line 1: | ||
− | <Font color="blue">Réseau</Font>(''Fr'') | + | <Font color="orange">مشبك</Font> (''Ar''); <Font color="blue">Réseau</Font> (''Fr''); <Font color="red">Gitter</Font> (''Ge''); <Font color="black">Reticolo</Font> (''It''); <font color="purple">格子</font> (''Ja''); <font color="brown">Решётка</font> (''Ru''); <Font color="green">Red</Font> (''Sp''). |
+ | |||
A '''lattice''' in the vector space '''V'''<sup>''n''</sup> is the set of all integral linear combinations '''t''' = ''u''<sub>1</sub>'''a<sub>1</sub>''' + ''u''<sub>2</sub>'''a<sub>2</sub>''' + ... + ''u''<sub>k</sub>'''a<sub>k</sub>''' of a system ('''a<sub>1</sub>''', '''a<sub>2</sub>''', ... , '''a<sub>k</sub>''') of linearly independent vectors in '''V'''<sup>''n''</sup>. | A '''lattice''' in the vector space '''V'''<sup>''n''</sup> is the set of all integral linear combinations '''t''' = ''u''<sub>1</sub>'''a<sub>1</sub>''' + ''u''<sub>2</sub>'''a<sub>2</sub>''' + ... + ''u''<sub>k</sub>'''a<sub>k</sub>''' of a system ('''a<sub>1</sub>''', '''a<sub>2</sub>''', ... , '''a<sub>k</sub>''') of linearly independent vectors in '''V'''<sup>''n''</sup>. |
Revision as of 09:21, 12 October 2017
مشبك (Ar); Réseau (Fr); Gitter (Ge); Reticolo (It); 格子 (Ja); Решётка (Ru); Red (Sp).
A lattice in the vector space Vn is the set of all integral linear combinations t = u1a1 + u2a2 + ... + ukak of a system (a1, a2, ... , ak) of linearly independent vectors in Vn.
If k = n, i.e. if the linearly independent system is a basis of Vn, the lattice is often called a full lattice. In crystallography, lattices are almost always full lattices, therefore the attribute 'full' is usually suppressed.
See also
- Crystallographic basis
- Chapters 1.3.2 and 3.1 of International Tables for Crystallography, Volume A, 6th edition