Difference between revisions of "Cylindrical system"
From Online Dictionary of Crystallography
BrianMcMahon (talk | contribs) m (Style edits to align with printed edition) |
BrianMcMahon (talk | contribs) (Tidied translations and added German and Spanish (U. Mueller)) |
||
Line 1: | Line 1: | ||
− | < | + | <font color="blue">Système cylindrique</font> (''Fr''). <font color="red">Zylindrisches System</font> (''Ge''). <font color="black">Sistema cilindrico </font> (''It''). <font color="green">Sistema cilíndrico</font> (''Sp''). |
== Definition == | == Definition == |
Revision as of 17:39, 9 November 2017
Système cylindrique (Fr). Zylindrisches System (Ge). Sistema cilindrico (It). Sistema cilíndrico (Sp).
Definition
The cylindrical system contains non-crystallographic point groups with one axis of revolution (or isotropy axis). There are five groups in the spherical system:
Hermann-Mauguin symbol | Short Hermann-Mauguin symbol | Schönflies symbol | Order of the group | General form |
---|---|---|---|---|
A_\infty | \infty | C_\infty | \infty | rotating cone |
{A_\infty \over M}C | {\bar \infty} | C_{\infty h} \equiv S_{\infty} \equiv C_{\infty i} | \infty | rotating finite cylinder |
A_\infty \infty A_2 | \infty 2 | D_{\infty } | \infty | finite cylinder submitted to equal and opposite torques |
A_\infty M | \infty m | C_{\infty v} | \infty | stationary cone |
{A_\infty \over M} {\infty A_2 \over \infty M} C | {\bar \infty}m \equiv {\bar \infty} {2\over m} | D_{\infty h} \equiv D_{\infty d} | \infty | stationary finite cylinder |
Note that A_\infty M represents the symmetry of a force, or of an electric field, and that {A_\infty \over M}C represents the symmetry of a magnetic field (Curie, 1894), while {A_\infty \over M} {\infty A_2 \over \infty M} C represents the symmetry of a uniaxial compression.
History
The groups containing isotropy axes were introduced by P. Curie (1859-1906) in order to describe the symmetry of physical systems [Curie, P. (1884). Bull. Soc. Fr. Minéral. 7, 89-110. Sur les questions d'ordre: répétitions; Curie, P. (1894). J. Phys. (Paris), 3, 393-415. Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique].
See also
- Curie laws
- Spherical system
- Chapter 3.2.1.4 of International Tables for Crystallography, Volume A, 6th edition
- Chapter 1.1.4 of International Tables for Crystallography, Volume D