Actions

Difference between revisions of "Cylindrical system"

From Online Dictionary of Crystallography

m (Style edits to align with printed edition)
(Tidied translations and added German and Spanish (U. Mueller))
Line 1: Line 1:
<Font color="blue"> Système cylindrique</Font> (''Fr''). <Font color="black">Sistema cilindrico </Font> (''It'').
+
<font color="blue">Système cylindrique</font> (''Fr''). <font color="red">Zylindrisches System</font> (''Ge''). <font color="black">Sistema cilindrico </font> (''It''). <font color="green">Sistema cilíndrico</font> (''Sp'').
  
 
== Definition ==
 
== Definition ==

Revision as of 17:39, 9 November 2017

Système cylindrique (Fr). Zylindrisches System (Ge). Sistema cilindrico (It). Sistema cilíndrico (Sp).

Definition

The cylindrical system contains non-crystallographic point groups with one axis of revolution (or isotropy axis). There are five groups in the spherical system:

Hermann-Mauguin symbol Short Hermann-Mauguin symbol Schönflies symbol Order of the groupGeneral form
A_\infty \infty C_\infty \infty rotating cone
{A_\infty \over M}C {\bar \infty} C_{\infty h} \equiv S_{\infty} \equiv C_{\infty i} \infty rotating finite cylinder
A_\infty \infty A_2 \infty 2 D_{\infty } \infty finite cylinder
submitted to equal and
opposite torques
A_\infty M \infty m C_{\infty v} \infty stationary cone
{A_\infty \over M} {\infty A_2 \over \infty M} C {\bar \infty}m \equiv {\bar \infty} {2\over m} D_{\infty h} \equiv D_{\infty d} \infty stationary finite cylinder


CylindricalSystem.gif

Note that A_\infty M represents the symmetry of a force, or of an electric field, and that {A_\infty \over M}C represents the symmetry of a magnetic field (Curie, 1894), while {A_\infty \over M} {\infty A_2 \over \infty M} C represents the symmetry of a uniaxial compression.

History

The groups containing isotropy axes were introduced by P. Curie (1859-1906) in order to describe the symmetry of physical systems [Curie, P. (1884). Bull. Soc. Fr. Minéral. 7, 89-110. Sur les questions d'ordre: répétitions; Curie, P. (1894). J. Phys. (Paris), 3, 393-415. Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique].

See also

  • Curie laws
  • Spherical system
  • Chapter 3.2.1.4 of International Tables for Crystallography, Volume A, 6th edition
  • Chapter 1.1.4 of International Tables for Crystallography, Volume D