Actions

Difference between revisions of "Displacive modulation"

From Online Dictionary of Crystallography

m (lang, links)
(Tidied translations and added German and Spanish (U. Mueller))
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<Font color="blue">Modulation displacive </font>(''Fr''). <Font color="purple">変位型変調</font>(''Ja'').
+
<font color="blue">Modulation displacive</font> (''Fr''). <font color="red">Displazive Modulation</font> (''Ge''). <font color="purple">変位型変調</font> (''Ja''). <font color="green">Modulación displaciva</font> (''Sp'').
  
  
Line 12: Line 12:
 
<math> u_j( r)~=~\sum_ k \hat{ u}( k) \exp (2\pi i  k. r),~with~ k=\sum_{i=1}^n h_i  a_i^*,</math>
 
<math> u_j( r)~=~\sum_ k \hat{ u}( k) \exp (2\pi i  k. r),~with~ k=\sum_{i=1}^n h_i  a_i^*,</math>
  
with finite value of ''n''. If ''n''=1, the modulated structure is one-dimensionally
+
with finite value of ''n''. If ''n''=1, the modulated structure is one-dimensionally modulated. A special case of a one-dimensionally modulated structure is
modulated. A special case of a one-dimensionally modulated structure is
 
  
<math>r(n,j)_{\alpha}~=~ n_{\alpha}+ r_{j\alpha}+A_{j\alpha} \sin \left(2\pi i  q. n+ r_j)+\phi_{j\alpha}\right),  (\alpha=x,y,z).</math>
+
<math>r(n,j)_{\alpha}~=~ n_{\alpha}+ r_{j\alpha}+A_{j\alpha} \sin [\left(2\pi i  q. n+ r_j)+\phi_{j\alpha}\right)],  (\alpha=x,y,z).</math>
  
  
 
[[Category: Fundamental crystallography]]
 
[[Category: Fundamental crystallography]]

Latest revision as of 13:51, 10 November 2017

Modulation displacive (Fr). Displazive Modulation (Ge). 変位型変調 (Ja). Modulación displaciva (Sp).


For a displacively modulated crystal phase, the positions of the atoms are displaced from those of a basis structure with space group symmetry (an ordinary crystal). The displacements are given by the atomic modulation function uj(r), where j indicates the jth atom in the unit cell of the basic structure.

[math] r( n,j)~=~ n+ r_j+ u_j( n+ r_j).[/math]

The modulation function has a Fourier expansion

[math] u_j( r)~=~\sum_ k \hat{ u}( k) \exp (2\pi i k. r),~with~ k=\sum_{i=1}^n h_i a_i^*,[/math]

with finite value of n. If n=1, the modulated structure is one-dimensionally modulated. A special case of a one-dimensionally modulated structure is

[math]r(n,j)_{\alpha}~=~ n_{\alpha}+ r_{j\alpha}+A_{j\alpha} \sin [\left(2\pi i q. n+ r_j)+\phi_{j\alpha}\right)], (\alpha=x,y,z).[/math]