Actions

Difference between revisions of "Eigensymmetry"

From Online Dictionary of Crystallography

m (See also: 6th edition of ITA)
(Tidied translations and corrected Spanish (U. Mueller))
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<Font color="blue"> Symétrie propre</Font> (''Fr''). <Font color="red"> Eigensymmetrie</Font> (''Ge''). <Font color="black"> Simmetria propria</Font> (''It''). <Font color="purple"> 固有対称性 </Font> (''Ja'').  
+
<font color="blue">Symétrie propre</font> (''Fr''). <font color="red">Eigensymmetrie</font> (''Ge''). <font color="black">Simmetria propria</font> (''It''). <font color="purple">固有対称性</font> (''Ja''). <font color="green">Simetría propia</font> (''Sp'').
  
 
== Definition ==
 
== Definition ==
Line 11: Line 11:
  
 
== See also ==
 
== See also ==
*Sections 3.2.1.2.2 and 3.4.1.3 of ''International Tables of Crystallography, Volume A'', 6<sup>th</sup> edition
+
*Chapters 3.2.1.2.2 and 3.4.1.3 of ''International Tables for Crystallography, Volume A'', 6th edition
*Chapter 3.3 of ''International Tables of Crystallography, Volume D''
+
*Chapter 3.3 of ''International Tables for Crystallography, Volume D''
  
 
[[Category:Fundamental crystallography]]
 
[[Category:Fundamental crystallography]]

Latest revision as of 09:40, 13 November 2017

Symétrie propre (Fr). Eigensymmetrie (Ge). Simmetria propria (It). 固有対称性 (Ja). Simetría propia (Sp).

Definition

The eigensymmetry, or inherent symmetry, of a crystal is the point group or space group of a crystal, irrespective of its orientation and location in space.

Examples

  • The space group of a crystal structure is the intersection of the eigensymmetries of the crystallographic orbits building the structure.
  • All individuals of a twinned crystal have the same (or the enantiomorphic) eigensymmetry but may exhibit different orientations. The orientations of each of two twin components are related by a twin operation which cannot be part of the eigensymmetry.
  • In morphology, the eigensymmetry is the full symmetry of a crystal form, considered as a polyhedron by itself. The eigensymmetry point group is either the generating point group itself or a supergroup of it.

See also

  • Chapters 3.2.1.2.2 and 3.4.1.3 of International Tables for Crystallography, Volume A, 6th edition
  • Chapter 3.3 of International Tables for Crystallography, Volume D