Difference between revisions of "Factor group"
From Online Dictionary of Crystallography
BrianMcMahon (talk | contribs) m (Style edits to align with printed edition) |
BrianMcMahon (talk | contribs) m (Tidied translations.) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | <font color=" | + | <font color="orange">زمرة خارج القسمة</font> (''Ar''). <font color="blue">Groupe facteur</font> (''Fr''). <font color="red">Faktorgruppe</font> (''Ge''). <font color="black">Gruppo fattore</font> (''It''). <font color="purple">因子群 (商群、剰余群)</font> (''Ja''). <font color="brown">Факторгруппа</font> (''Ru''). <font color="green">Grupo cociente</font> (''Sp''). |
==Definition== | ==Definition== |
Latest revision as of 13:22, 13 November 2017
زمرة خارج القسمة (Ar). Groupe facteur (Fr). Faktorgruppe (Ge). Gruppo fattore (It). 因子群 (商群、剰余群) (Ja). Факторгруппа (Ru). Grupo cociente (Sp).
Definition
Let N be a normal subgroup of a group G. The factor group or quotient group or residue class group G/N is the set of all left cosets of N in G, i.e.
- [math]G/N = \{ aN : a \isin G \}.[/math]
For each aN and bN in G/N, the product of aN and bN is (aN)(bN), which is still a left coset. In fact, because N is normal:
- (aN)(bN) = a(Nb)N = a(bN)N = (ab)NN = (ab)N.
The inverse of an element aN of G/N is a−1N.
Example
The factor group G/T of a space group G and its translation subgroup is isomorphic to the point group P of G.
See also
- Chapter 1.1.5 of International Tables for Crystallography, Volume A, 6th edition