Actions

Difference between revisions of "Hemihedry"

From Online Dictionary of Crystallography

m (Tidied translations.)
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<font color="blue">Hémiédrie </font>(''Fr''). <Font color="green"> Hemiedria </Font>(''Sp''). <Font color="black"> Emiedria </Font>(''It''). <Font color="purple"> 半面像 </Font>(''Ja'')
+
<font color="blue">Hémiédrie</font> (''Fr''). <font color="red">Hemiedrie</font> (''Ge''). <font color="black">Emiedria</font> (''It''). <font color="purple">半面像</font> (''Ja''). <font color="green">Hemiedría</font>  (''Sp'').
  
  
 
== Definition ==
 
== Definition ==
  
The point group of a crystal is called hemihedry if it is a subgroup of index 2 of the point group of its lattice.
+
The [[point group]] of a crystal is called hemihedry if it is a subgroup of index 2 of the point group of its lattice.
  
 
== See also ==
 
== See also ==
 +
*Chapter 3.2.1.1 of ''International Tables for Crystallography, Volume A'', 6th edition
  
Section 9.1 of ''International Tables of Crystallography, Volume A''
 
  
 
+
[[Category:Fundamental crystallography]]<br>
[[Category:Fundamental crystallography]]
+
[[Category:Morphological crystallography]]

Latest revision as of 09:22, 14 November 2017

Hémiédrie (Fr). Hemiedrie (Ge). Emiedria (It). 半面像 (Ja). Hemiedría (Sp).


Definition

The point group of a crystal is called hemihedry if it is a subgroup of index 2 of the point group of its lattice.

See also

  • Chapter 3.2.1.1 of International Tables for Crystallography, Volume A, 6th edition