Difference between revisions of "Sohncke groups"
From Online Dictionary of Crystallography
m (3D) |
BrianMcMahon (talk | contribs) m (Tidied translations.) |
||
Line 1: | Line 1: | ||
− | <font color="blue">Groupes de Sohncke</font> (''Fr''). <font color="red">Sohncke-Raumgruppe</font> (''Ge''). <font color=" | + | <font color="blue">Groupes de Sohncke</font> (''Fr''). <font color="red">Sohncke-Raumgruppe</font> (''Ge''). <font color="black">Gruppi di Sohncke</font> (''It''). <font color="purple">ソンケ群</font> (''Ja''). <font color="green">Grupos de Sohncke</font> (''Sp''). |
+ | |||
[[Image:Sohncke-vs-chiral-scheme.png|500px|Classification scheme of space groups in three-dimensional space in terms of chirality.|right]] | [[Image:Sohncke-vs-chiral-scheme.png|500px|Classification scheme of space groups in three-dimensional space in terms of chirality.|right]] |
Revision as of 08:47, 20 November 2017
Groupes de Sohncke (Fr). Sohncke-Raumgruppe (Ge). Gruppi di Sohncke (It). ソンケ群 (Ja). Grupos de Sohncke (Sp).
Sohncke groups are the 65 three-dimensional space groups containing only operations of the first kind (rotations, rototranslations, translations). Chiral crystal structures, including proteins, occur in these groups, not only in the chiral space groups.
The term comes from Leonhard Sohncke (Halle, 22 February 1842 – München, 1 November 1897), German mathematician, whose derivation was based on the results previously published by Marie Ennemond Camille Jordan (Lyon, 5 January 1838 – Paris, 22 January 1922), French mathematician.
References
- Jordan, C. (1869). Annali di Matematica Pura ed Applicata (1867-1897), 2, 167-215. Mémoire sur les groupes de mouvements.
- Sohncke, L. (1879). Entwickelung einer Theorie der Krystallstruktur. B. G. Teubner, Leipzig