Actions

Difference between revisions of "Cylindrical system"

From Online Dictionary of Crystallography

m (typo)
m (Tidied translations.)
 
(5 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<Font color="blue"> Système cylindrique </Font> (''Fr'') <Font color="black"> Sistema cilindrico </Font> (''It'').
+
<font color="blue">Système cylindrique</font> (''Fr''). <font color="red">Zylindrisches System</font> (''Ge''). <font color="black">Sistema cilindrico</font> (''It''). <font color="green">Sistema cilíndrico</font> (''Sp'').
  
 
== Definition ==
 
== Definition ==
Line 8: Line 8:
 
<table border cellspacing=0 cellpadding=5 align=center>
 
<table border cellspacing=0 cellpadding=5 align=center>
 
  <tr>
 
  <tr>
<th>Hermann-Mauguin symbol</th> <th> Short Hermann-Mauguin symbol </th> <th>Schönfliess symbol </th> <th> order of the group</th><th>general form</th>
+
<th>Hermann-Mauguin symbol</th> <th> Short Hermann-Mauguin symbol </th> <th>Schönflies symbol </th> <th>Order of the group</th><th>General form</th>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
Line 35: Line 35:
 
[[Image:CylindricalSystem.gif|center]]
 
[[Image:CylindricalSystem.gif|center]]
  
Note that <math> A_\infty M</math> represents the symmetry of a force, or of an electric field and that <math> {A_\infty \over M}C</math> represents the symmetry of a magnetic field (Curie 1894), while <math> {A_\infty \over M} {\infty A_2 \over \infty M} C</math> represents the symmetry of a uniaxial compression.
+
Note that <math> A_\infty M</math> represents the symmetry of a force, or of an electric field, and that <math> {A_\infty \over M}C</math> represents the symmetry of a magnetic field (Curie, 1894), while <math> {A_\infty \over M} {\infty A_2 \over \infty M} C</math> represents the symmetry of a uniaxial compression.
  
 
== History ==
 
== History ==
  
 
The groups containing isotropy axes were introduced by P. Curie (1859-1906) in order to describe the symmetry of  
 
The groups containing isotropy axes were introduced by P. Curie (1859-1906) in order to describe the symmetry of  
physical systems (Curie P. (1884). ''Sur les questions d'ordre: répétitions. Bull. Soc. Fr. Minéral.'', '''7''', 89-110; Curie P. (1894). ''Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J. Phys. (Paris)'', '''3''', 393-415.).
+
physical systems [Curie, P. (1884). ''Bull. Soc. Fr. Minéral.'' '''7''', 89-110. ''Sur les questions d'ordre: répétitions''; Curie, P. (1894). ''J. Phys. (Paris)'', '''3''', 393-415. ''Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique''].
  
 
== See also ==
 
== See also ==
  
[[Curie laws]]<br>
+
*[[Curie laws]]
[[spherical system]]<br>
+
*[[Spherical system]]
Section 10.1.4 of ''International Tables of Crystallography, Volume A''<br>
+
*Chapter 3.2.1.4 of ''International Tables for Crystallography, Volume A'', 6th edition
Section 1.1.4 of ''International Tables of Crystallography, Volume D''<br>
+
*Chapter 1.1.4 of ''International Tables for Crystallography, Volume D''
----
+
 
 +
[[Category:Fundamental crystallography]]
 +
[[Category:Physical properties of crystals]]

Latest revision as of 13:18, 29 November 2017

Système cylindrique (Fr). Zylindrisches System (Ge). Sistema cilindrico (It). Sistema cilíndrico (Sp).

Definition

The cylindrical system contains non-crystallographic point groups with one axis of revolution (or isotropy axis). There are five groups in the spherical system:

Hermann-Mauguin symbol Short Hermann-Mauguin symbol Schönflies symbol Order of the groupGeneral form
[math] A_\infty[/math] [math]\infty[/math] [math]C_\infty [/math] [math] \infty[/math] rotating cone
[math] {A_\infty \over M}C[/math] [math] {\bar \infty}[/math] [math]C_{\infty h} \equiv S_{\infty} \equiv C_{\infty i}[/math] [math] \infty[/math] rotating finite cylinder
[math] A_\infty \infty A_2[/math] [math] \infty 2[/math] [math]D_{\infty }[/math] [math] \infty[/math] finite cylinder
submitted to equal and
opposite torques
[math] A_\infty M[/math] [math]\infty m[/math] [math]C_{\infty v}[/math] [math] \infty[/math] stationary cone
[math] {A_\infty \over M} {\infty A_2 \over \infty M} C[/math] [math] {\bar \infty}m \equiv {\bar \infty} {2\over m}[/math] [math]D_{\infty h} \equiv D_{\infty d}[/math] [math] \infty[/math] stationary finite cylinder


CylindricalSystem.gif

Note that [math] A_\infty M[/math] represents the symmetry of a force, or of an electric field, and that [math] {A_\infty \over M}C[/math] represents the symmetry of a magnetic field (Curie, 1894), while [math] {A_\infty \over M} {\infty A_2 \over \infty M} C[/math] represents the symmetry of a uniaxial compression.

History

The groups containing isotropy axes were introduced by P. Curie (1859-1906) in order to describe the symmetry of physical systems [Curie, P. (1884). Bull. Soc. Fr. Minéral. 7, 89-110. Sur les questions d'ordre: répétitions; Curie, P. (1894). J. Phys. (Paris), 3, 393-415. Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique].

See also

  • Curie laws
  • Spherical system
  • Chapter 3.2.1.4 of International Tables for Crystallography, Volume A, 6th edition
  • Chapter 1.1.4 of International Tables for Crystallography, Volume D