Difference between revisions of "Merohedry"
From Online Dictionary of Crystallography
BrianMcMahon (talk | contribs) (Tidied translations and added German (U. Mueller)) |
BrianMcMahon (talk | contribs) m (Tidied translations.) |
||
Line 1: | Line 1: | ||
− | <font color="blue">Mériédrie</font> (''Fr''). <font color="red">Meroedrie</font> (''Ge''). <font color="black">Meriedria </font>(''It''). <font color="purple">欠面像</font> (''Ja''). <font color="green">Meroedria</font> (''Sp''). | + | <font color="blue">Mériédrie</font> (''Fr''). <font color="red">Meroedrie</font> (''Ge''). <font color="black">Meriedria</font> (''It''). <font color="purple">欠面像</font> (''Ja''). <font color="green">Meroedria</font> (''Sp''). |
== Definition == | == Definition == |
Latest revision as of 09:16, 11 December 2017
Mériédrie (Fr). Meroedrie (Ge). Meriedria (It). 欠面像 (Ja). Meroedria (Sp).
Definition
The point group of a crystal is called merohedry if it is a subgroup of the point group of its lattice. It is a hemihedry (tetartohedry, ogdohedry) if it is a subgroup of index 2 (4, 8) of the point group of its lattice.
See also
- Hemihedry
- Merohedral
- Ogdohedry
- Tetartohedry
- Chapter 3.2.1 of International Tables for Crystallography, Volume A, 6th edition