Actions

Difference between revisions of "Reduced cell"

From Online Dictionary of Crystallography

(Created page with "A primitive basis a, b, c is called a ‘reduced basis’ if it is right-handed and if the components of the metric tensor satisfy the conditions below. Because of [[lattice]...")
 
(Languages)
Line 1: Line 1:
 +
<font color="blue">Maille réduite</font> (''Fr''). <font color="black">Cella ridotta</font> (''It''). <font color="purple">規約単位胞</font> (''Ja'').
 +
 +
 
A primitive basis a, b, c is called a ‘reduced basis’ if it is right-handed and if the components of the [[metric tensor]] satisfy the conditions below. Because of [[lattice]] [[symmetry operation|symmetry]] there can be two or more possible orientations of the reduced basis in a given lattice but, apart from orientation, the reduced basis is unique.
 
A primitive basis a, b, c is called a ‘reduced basis’ if it is right-handed and if the components of the [[metric tensor]] satisfy the conditions below. Because of [[lattice]] [[symmetry operation|symmetry]] there can be two or more possible orientations of the reduced basis in a given lattice but, apart from orientation, the reduced basis is unique.
 
The type of a cell depends on the sign of
 
The type of a cell depends on the sign of
Line 6: Line 9:
 
If ''T'' > 0, the cell is of type I, if ''T'' &#8804; 0 it is of type II.  
 
If ''T'' > 0, the cell is of type I, if ''T'' &#8804; 0 it is of type II.  
  
The conditions for a primitive cell to be a reduced cell can all be stated analytically as follows:
+
The conditions for a primitive cell to be a reduced cell can all be stated analytically as follows.
  
 
==Type-I cell==
 
==Type-I cell==

Revision as of 15:48, 18 December 2017

Maille réduite (Fr). Cella ridotta (It). 規約単位胞 (Ja).


A primitive basis a, b, c is called a ‘reduced basis’ if it is right-handed and if the components of the metric tensor satisfy the conditions below. Because of lattice symmetry there can be two or more possible orientations of the reduced basis in a given lattice but, apart from orientation, the reduced basis is unique. The type of a cell depends on the sign of

[math]T = (\mathbf{a}\cdot\mathbf{b})(\mathbf{b}\cdot\mathbf{c})(\mathbf{c}\cdot\mathbf{a})[/math].

If T > 0, the cell is of type I, if T ≤ 0 it is of type II.

The conditions for a primitive cell to be a reduced cell can all be stated analytically as follows.

Type-I cell

Main conditions

  • [math]\mathbf{a}\cdot\mathbf{a}[/math][math]\mathbf{b}\cdot\mathbf{b}[/math][math]\mathbf{c}\cdot\mathbf{c}[/math]
  • [math]|\mathbf{b}\cdot\mathbf{c}|[/math][math](\mathbf{b}\cdot\mathbf{b})/2[/math]
  • [math]|\mathbf{a}\cdot\mathbf{c}|[/math][math](\mathbf{a}\cdot\mathbf{a})/2[/math]
  • [math]|\mathbf{a}\cdot\mathbf{b}|[/math][math](\mathbf{a}\cdot\mathbf{a})/2[/math]
  • [math]\mathbf{b}\cdot\mathbf{c} \gt 0[/math]
  • [math]\mathbf{a}\cdot\mathbf{c} \gt 0[/math]
  • [math]\mathbf{a}\cdot\mathbf{b} \gt 0[/math]

Special conditions

  • if [math]\mathbf{a}\cdot\mathbf{a} = \mathbf{b}\cdot\mathbf{b}[/math] then [math]\mathbf{b}\cdot\mathbf{c}[/math][math]\mathbf{a}\cdot\mathbf{c}[/math]
  • if [math]\mathbf{b}\cdot\mathbf{b} = \mathbf{c}\cdot\mathbf{c}[/math] then [math]\mathbf{a}\cdot\mathbf{c}[/math][math]\mathbf{a}\cdot\mathbf{b}[/math]
  • if [math]\mathbf{b}\cdot\mathbf{c} = (\mathbf{b}\cdot\mathbf{b})[/math]/2 then [math]\mathbf{a}\cdot\mathbf{b}[/math][math]2\mathbf{a}\cdot\mathbf{c}[/math]
  • if [math] \mathbf{a}\cdot\mathbf{c} = (\mathbf{a}\cdot\mathbf{a})[/math]/2 then [math]\mathbf{a}\cdot\mathbf{b}[/math][math]2\mathbf{b}\cdot\mathbf{c}[/math]
  • if [math] \mathbf{a}\cdot\mathbf{b} = (\mathbf{a}\cdot\mathbf{a})[/math]/2 then [math]\mathbf{a}\cdot\mathbf{c}[/math][math]2\mathbf{b}\cdot\mathbf{c}[/math]


Type-II cell

Main conditions

  • [math]\mathbf{a}\cdot\mathbf{a}[/math][math]\mathbf{b}\cdot\mathbf{b}[/math][math]\mathbf{c}\cdot\mathbf{c}[/math]
  • [math]|\mathbf{b}\cdot\mathbf{c}|[/math][math](\mathbf{b}\cdot\mathbf{b})/2[/math]
  • [math]|\mathbf{a}\cdot\mathbf{c}|[/math][math](\mathbf{a}\cdot\mathbf{a})/2[/math]
  • [math]|\mathbf{a}\cdot\mathbf{b}|[/math][math](\mathbf{a}\cdot\mathbf{a})/2[/math]
  • [math](|\mathbf{b}\cdot\mathbf{c}|+ |\mathbf{a}\cdot\mathbf{c}|+|\mathbf{a}\cdot\mathbf{b}|)[/math][math](\mathbf{a}\cdot\mathbf{a}+\mathbf{b}\cdot\mathbf{b})/2[/math]
  • [math]\mathbf{b}\cdot\mathbf{c}[/math] ≤ 0
  • [math]\mathbf{a}\cdot\mathbf{c}[/math] ≤ 0
  • [math]\mathbf{a}\cdot\mathbf{b}[/math] ≤ 0

Special conditions

  • if [math]\mathbf{a}\cdot\mathbf{a} = \mathbf{b}\cdot\mathbf{b}[/math] then [math]|\mathbf{b}\cdot\mathbf{c}|[/math][math]|\mathbf{a}\cdot\mathbf{c}|[/math]
  • if [math]\mathbf{b}\cdot\mathbf{b} = \mathbf{c}\cdot\mathbf{c}[/math] then [math]|\mathbf{a}\cdot\mathbf{c}|[/math][math]|\mathbf{a}\cdot\mathbf{b}|[/math]
  • if [math]|\mathbf{b}\cdot\mathbf{c}| = (\mathbf{b}\cdot\mathbf{b})/2[/math] then [math]\mathbf{a}\cdot\mathbf{b} = 0[/math]
  • if [math]|\mathbf{a}\cdot\mathbf{c}| = (\mathbf{a}\cdot\mathbf{a})[/math]/2 then [math]\mathbf{a}\cdot\mathbf{b} = 0[/math]
  • if [math]\mathbf{a}\cdot\mathbf{b} = (\mathbf{a}\cdot\mathbf{a})[/math]/2 then [math]\mathbf{a}\cdot\mathbf{c} = 0[/math]
  • if [math](|\mathbf{b}\cdot\mathbf{c}|+ |\mathbf{a}\cdot\mathbf{c}|+|\mathbf{a}\cdot\mathbf{b}|) = (\mathbf{a}\cdot\mathbf{a}+\mathbf{b}\cdot\mathbf{b})/2[/math] then [math]\mathbf{a}\cdot\mathbf{a}[/math][math]2|\mathbf{a}\cdot\mathbf{c}|+ |\mathbf{a}\cdot\mathbf{b}|[/math]