Actions

Difference between revisions of "Bravais lattice"

From Online Dictionary of Crystallography

m (See also: 6th edition of ITA)
(Fixing a link following a page rename)
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<font color="blue">Réseau de Bravais</font> (''Fr''); <font color="red">Bravais Gitter</font> (''Ge''); <font color="black">Reticolo di Bravais</font> (''It''); <font color="purple">ブラベー格子</font> (''Ja'')<br><br>
+
<font color="blue">Réseau de Bravais</font> (''Fr''). <font color="red">Bravais-Gitter</font> (''Ge''). <font color="black">Reticolo di Bravais</font> (''It''). <font color="purple">ブラベー格子</font> (''Ja''). <font color="green">Red de Bravais</font> (''Sp'').
  
 
The current nomenclature adopted by the IUCr prefers to use the expression '''Bravais types of lattices''' to emphasize that '''Bravais lattices''' are not individual lattices but types or classes of all lattices with certain common properties.
 
The current nomenclature adopted by the IUCr prefers to use the expression '''Bravais types of lattices''' to emphasize that '''Bravais lattices''' are not individual lattices but types or classes of all lattices with certain common properties.
  
 
== Definition ==
 
== Definition ==
All vector lattices whose matrix groups belong to the same [[Bravais class]] correspond to the same '''Bravais type of lattice'''.
+
All vector lattices whose matrix groups belong to the same [[Bravais arithmetic class]] correspond to the same '''Bravais type of lattice'''.
  
 
== See also ==
 
== See also ==
[[Bravais class]]<br>
+
*[[Bravais arithmetic class]]<br>
Section 1.3.4.3 of ''International Tables of Crystallography, Volume A'', 6<sup>th</sup> edition
+
*Chapter 1.3.4.3 of ''International Tables for Crystallography, Volume A'', 6th edition
  
 
[[category: Fundamental crystallography]]
 
[[category: Fundamental crystallography]]

Latest revision as of 17:25, 30 May 2019

Réseau de Bravais (Fr). Bravais-Gitter (Ge). Reticolo di Bravais (It). ブラベー格子 (Ja). Red de Bravais (Sp).

The current nomenclature adopted by the IUCr prefers to use the expression Bravais types of lattices to emphasize that Bravais lattices are not individual lattices but types or classes of all lattices with certain common properties.

Definition

All vector lattices whose matrix groups belong to the same Bravais arithmetic class correspond to the same Bravais type of lattice.

See also