Actions

Difference between revisions of "Spherical system"

From Online Dictionary of Crystallography

m (Tidied translations.)
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<Font color="blue"> Système sphérique </Font> (''Fr'') <Font color="black"> Sistema sferico </Font> (''It'').
+
<font color="blue">Système sphérique</font> (''Fr''). <font color="black">Sistema sferico</font> (''It'').
 +
 
  
 
== Definition ==
 
== Definition ==
  
 
The spherical system contains non-crystallographic point groups with more than one axis of revolution. These groups therefore contain an infinity of axes of revolution (or isotropy axis). There are two groups in the spherical system:
 
The spherical system contains non-crystallographic point groups with more than one axis of revolution. These groups therefore contain an infinity of axes of revolution (or isotropy axis). There are two groups in the spherical system:
 
  
 
<table border cellspacing=0 cellpadding=5 align=center>
 
<table border cellspacing=0 cellpadding=5 align=center>
 
  <tr>
 
  <tr>
<th>Hermann-Mauguin symbol</th> <th> Short Hermann-Mauguin symbol </th> <th>Schönfliess symbol </th> <th> order of the group</th><th>general form</th>
+
<th>Hermann-Mauguin symbol</th> <th>Short Hermann-Mauguin symbol </th> <th>Schönflies symbol </th> <th>Order of the group</th><th>General form</th>
 
</tr>
 
</tr>
 
<tr>
 
<tr>
Line 20: Line 20:
 
== History ==
 
== History ==
  
The groups containing isotropy axes were introduced by P. Curie (1859-1906) in order to describe the symmetry of physical systems (Curie P. (1884). ''Sur les questions d'ordre: répétitions. Bull. Soc. Fr. Minéral.'', '''7''', 89-110; Curie P. (1894). ''Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J. Phys. (Paris)'', '''3''', 393-415.).
+
The groups containing isotropy axes were introduced by P. Curie (1859-1906) in order to describe the symmetry of physical systems [Curie, P. (1884). ''Bull. Soc. Fr. Minéral.'', '''7''', 89-110. ''Sur les questions d'ordre: répétitions''; Curie, P. (1894). ''J. Phys. (Paris)'', '''3''', 393-415. ''Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique''].
  
 
== See also ==
 
== See also ==
 +
*[[Curie laws]]
 +
*[[Cylindrical system]]
 +
*Chapter 3.2.1.4 of ''International Tables for Crystallography, Volume A'', 6th edition
 +
*Chapter 1.1.4 of ''International Tables for Crystallography, Volume D''
  
[[Curie laws]]<br>
+
[[Category:Fundamental crystallography]]
Section 10.1.4 of ''International Tables of Crystallography, Volume A''<br>
+
[[Category:Physical properties of crystals]]
Section 1.1.4 of ''International Tables of Crystallography, Volume D''<br>
 
----
 
 
 
[[Category:Fundamental crystallography]]<br>
 
[[Category:Physical properties of crystals]]<br>
 

Latest revision as of 11:40, 15 December 2017

Système sphérique (Fr). Sistema sferico (It).


Definition

The spherical system contains non-crystallographic point groups with more than one axis of revolution. These groups therefore contain an infinity of axes of revolution (or isotropy axis). There are two groups in the spherical system:

Hermann-Mauguin symbol Short Hermann-Mauguin symbol Schönflies symbol Order of the groupGeneral form
[math] \infty A_\infty[/math] [math]2\infty[/math] K [math] \infty[/math] sphere filled with
an optically active liquid
[math] \infty {A_\infty \over M}C[/math] [math] m {\bar \infty}[/math], [math]{2\over m}{\bar \infty} [/math] Kh [math] \infty[/math] stationary sphere

History

The groups containing isotropy axes were introduced by P. Curie (1859-1906) in order to describe the symmetry of physical systems [Curie, P. (1884). Bull. Soc. Fr. Minéral., 7, 89-110. Sur les questions d'ordre: répétitions; Curie, P. (1894). J. Phys. (Paris), 3, 393-415. Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique].

See also

  • Curie laws
  • Cylindrical system
  • Chapter 3.2.1.4 of International Tables for Crystallography, Volume A, 6th edition
  • Chapter 1.1.4 of International Tables for Crystallography, Volume D