Difference between revisions of "Spherical system"
From Online Dictionary of Crystallography
AndreAuthier (talk | contribs) |
m (→See also: typo) |
||
Line 24: | Line 24: | ||
== See also == | == See also == | ||
− | [Curie laws]]<br> | + | [[Curie laws]]<br> |
Section 10.1.4 of ''International Tables of Crystallography, Volume A''<br> | Section 10.1.4 of ''International Tables of Crystallography, Volume A''<br> | ||
Section 1.1.4 of ''International Tables of Crystallography, Volume D''<br> | Section 1.1.4 of ''International Tables of Crystallography, Volume D''<br> |
Revision as of 10:34, 11 May 2006
Système sphérique (Fr).
Definition
The spherical system contains non-crystallographic point groups with more than one axis of revolution. These groups therefore contain an infinity of axes of revolution (or isotropy axis). There are two groups in the spherical system:
Hermann-Mauguin symbol | Short Hermann-Mauguin symbol | Schönfliess symbol | order of the group | general form |
---|---|---|---|---|
[math] \infty A_\infty[/math] | [math]2\infty[/math] | K | [math] \infty[/math] | sphere filled with an optically active liquid |
[math] \infty {A_\infty \over M}C[/math] | [math] m {\bar \infty}[/math], [math]{2\over m}{\bar \infty} [/math] | Kh | [math] \infty[/math] | stationary sphere |
History
The groups containing isotropy axes were introduced by P. Curie (1859-1906) in order to describe the symmetry of physical systems (Curie P. (1884). Sur les questions d'ordre: rép\étitions. Bull. Soc. Fr. Minéral., 7, 89-110; Curie P. (1894). Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J. Phys. (Paris), 3, 393-415.).
See also
Curie laws
Section 10.1.4 of International Tables of Crystallography, Volume A
Section 1.1.4 of International Tables of Crystallography, Volume D