Actions

Difference between revisions of "Spherical system"

From Online Dictionary of Crystallography

m
Line 4: Line 4:
  
 
The spherical system contains non-crystallographic point groups with more than one axis of revolution. These groups therefore contain an infinity of axes of revolution (or isotropy axis). There are two groups in the spherical system:
 
The spherical system contains non-crystallographic point groups with more than one axis of revolution. These groups therefore contain an infinity of axes of revolution (or isotropy axis). There are two groups in the spherical system:
 
  
 
<table border cellspacing=0 cellpadding=5 align=center>
 
<table border cellspacing=0 cellpadding=5 align=center>
Line 28: Line 27:
 
Section 10.1.4 of ''International Tables of Crystallography, Volume A''<br>
 
Section 10.1.4 of ''International Tables of Crystallography, Volume A''<br>
 
Section 1.1.4 of ''International Tables of Crystallography, Volume D''<br>
 
Section 1.1.4 of ''International Tables of Crystallography, Volume D''<br>
----
 
  
 
[[Category:Fundamental crystallography]]<br>
 
[[Category:Fundamental crystallography]]<br>
 
[[Category:Physical properties of crystals]]<br>
 
[[Category:Physical properties of crystals]]<br>

Revision as of 11:19, 8 February 2012

Système sphérique (Fr) Sistema sferico (It).

Definition

The spherical system contains non-crystallographic point groups with more than one axis of revolution. These groups therefore contain an infinity of axes of revolution (or isotropy axis). There are two groups in the spherical system:

Hermann-Mauguin symbol Short Hermann-Mauguin symbol Schönfliess symbol order of the groupgeneral form
[math] \infty A_\infty[/math] [math]2\infty[/math] K [math] \infty[/math] sphere filled with
an optically active liquid
[math] \infty {A_\infty \over M}C[/math] [math] m {\bar \infty}[/math], [math]{2\over m}{\bar \infty} [/math] Kh [math] \infty[/math] stationary sphere

History

The groups containing isotropy axes were introduced by P. Curie (1859-1906) in order to describe the symmetry of physical systems (Curie P. (1884). Sur les questions d'ordre: répétitions. Bull. Soc. Fr. Minéral., 7, 89-110; Curie P. (1894). Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique. J. Phys. (Paris), 3, 393-415.).

See also

Curie laws
cylindrical system
Section 10.1.4 of International Tables of Crystallography, Volume A
Section 1.1.4 of International Tables of Crystallography, Volume D