Actions

Difference between revisions of "Integral reflection conditions"

From Online Dictionary of Crystallography

m (Corrected some broken HTML in the table markup)
(The selection rules for Obverse and Reverse setting for the Rhombehedrally centered cell were the wrong way round. Email from Alex Hubert; confirmed by Mois Aroyo.)
Line 36: Line 36:
 
<tr align=left>
 
<tr align=left>
 
<td> &minus; ''h'' + ''k'' + ''l'' = 3''n''</td> <td> rhombohedrally<br>
 
<td> &minus; ''h'' + ''k'' + ''l'' = 3''n''</td> <td> rhombohedrally<br>
centred, reverse<br>
 
setting </td><td rowspan=2>''R'' (hexagonal axes)</td></tr>
 
<tr align=left>
 
<td> ''h'' &minus; ''k'' + ''l'' = 3''n''</td> <td> rhombohedrally<br>
 
 
centred, obverse<br>
 
centred, obverse<br>
 
setting (standard)</td>
 
setting (standard)</td>
</tr>
+
<td rowspan=2>''R'' (hexagonal axes)</td></tr>
 +
<tr align=left>
 +
<td> ''h'' &minus; ''k'' + ''l'' = 3''n''</td><td> rhombohedrally<br>
 +
centred, reverse<br>
 +
setting </td></tr>
 
<tr align=left>
 
<tr align=left>
 
<td> ''h'' &minus; ''k'' = 3''n''</td> <td>hexagonally centred</td> <td> ''H''</td></tr>
 
<td> ''h'' &minus; ''k'' = 3''n''</td> <td>hexagonally centred</td> <td> ''H''</td></tr>

Revision as of 12:44, 5 May 2015

Conditions de réflexion intégrales (Fr).

Definition

The integral reflections are the general reflection conditions due to the centring of cells. They are given in the table below:

Integral reflection conditions for centred lattices.
Reflection
condition
Centring type of cell Centring symbol
None Primitive P
R (rhombohedral axes)
h + k = 2n C-face centred C
k + l = 2n A-face centred A
l + h = 2n B-face centred B
h + k + l = 2n body centred I
h + k, h + l and

k + l = 2n or:
h, k, l all odd or all

even (‘unmixed’)
all-face centred F
h + k + l = 3n rhombohedrally

centred, obverse

setting (standard)
R (hexagonal axes)
hk + l = 3n rhombohedrally

centred, reverse

setting
hk = 3n hexagonally centred H

See also

Section 2.2.13.1 of International Tables of Crystallography, Volume A