Difference between revisions of "Metric tensor"
From Online Dictionary of Crystallography
m (Lang) |
BrianMcMahon (talk | contribs) m (Style edits to align with printed edition) |
||
Line 1: | Line 1: | ||
− | <Font color="blue">Tenseur métrique</Font> (''Fr'') | + | <Font color="blue">Tenseur métrique</Font> (''Fr''). <Font color="red">Metrischer Tensor</Font> (''Ge''). <Font color="green">Tensor métrico</Font> (''Sp''). <Font color="black">Tensore metrico</Font> (''It''). <Font color="brown">Метрический тензор</Font> (''Ru''). <Font color="purple">計量テンソル</Font> (''Ja''). |
== Definition == | == Definition == | ||
Line 17: | Line 17: | ||
''g<sub>11</sub>'' = '''a<sup>2</sup>'''; ''g<sub>12</sub>'' = '''a . b'''; ''g<sub>13</sub>'' = '''a . c''';<br> | ''g<sub>11</sub>'' = '''a<sup>2</sup>'''; ''g<sub>12</sub>'' = '''a . b'''; ''g<sub>13</sub>'' = '''a . c''';<br> | ||
''g<sub>21</sub>'' = '''b . a'''; ''g<sub>22</sub>'' = '''b<sup>2</sup>'''; ''g<sub>23</sub>'' = '''b . c''';<br> | ''g<sub>21</sub>'' = '''b . a'''; ''g<sub>22</sub>'' = '''b<sup>2</sup>'''; ''g<sub>23</sub>'' = '''b . c''';<br> | ||
− | ''g<sub>31</sub>'' = '''c . a'''; ''g<sub>32</sub>'' = '''c . b'''; ''g<sub>33</sub>'' = '''c<sup>2</sup>''' | + | ''g<sub>31</sub>'' = '''c . a'''; ''g<sub>32</sub>'' = '''c . b'''; ''g<sub>33</sub>'' = '''c<sup>2</sup>'''. |
Because the metric tensor is symmetric, ''g<sub>12</sub>'' = ''g<sub>21</sub>'', ''g<sub>13</sub>'' = ''g<sub>31</sub>'', and ''g<sub>13</sub>'' = ''g<sub>31</sub>''. Thus there are only six unique elements, often presented as | Because the metric tensor is symmetric, ''g<sub>12</sub>'' = ''g<sub>21</sub>'', ''g<sub>13</sub>'' = ''g<sub>31</sub>'', and ''g<sub>13</sub>'' = ''g<sub>31</sub>''. Thus there are only six unique elements, often presented as | ||
Line 26: | Line 26: | ||
or, multiplying the second row by 2, as a so-called G<sup>6</sup> ("G" for Gruber) vector | or, multiplying the second row by 2, as a so-called G<sup>6</sup> ("G" for Gruber) vector | ||
− | ( '''a<sup>2</sup>''', '''b<sup>2</sup>''', '''c<sup>2</sup>''', 2 '''b . c''', 2 '''a . c''', 2 '''a . b''' ) | + | ( '''a<sup>2</sup>''', '''b<sup>2</sup>''', '''c<sup>2</sup>''', 2'''b . c''', 2'''a . c''', 2'''a . b''' ) |
+ | The inverse matrix of ''g<sub>ij</sub>'', ''g<sup>ij</sup>'', relates the [[dual basis]], or [[reciprocal space]] vectors '''e<sup>i</sup>''' to the direct basis vectors '''e<sub>i</sub>''', through the relations: | ||
− | + | '''e<sup>j</sup>''' = ''g<sup>ij</sup>'' '''e<sub>j</sub>'''. | |
− | '' | + | Note that ''g<sup>ik</sup>g<sub>kj</sub>'' = δ''<sup>k</sup><sub>j</sub>'', where δ''<sup>k</sup><sub>j</sub>'' is the Kronecker symbol, equal to 0 if ''i'' ≠ ''j'', and equal to 1 if ''i'' = ''j''. |
In three-dimensional space, the dual basis vectors are identical to the [[reciprocal space]] vectors and the components of ''g<sup>ij</sup>'' are: | In three-dimensional space, the dual basis vectors are identical to the [[reciprocal space]] vectors and the components of ''g<sup>ij</sup>'' are: | ||
Line 82: | Line 83: | ||
* The '''squares of the volumes''' ''V'' and ''V*'' of the direct space and reciprocal space unit cells are respectively equal to the determinants of the ''g<sub>ij</sub>'' 's and the ''g<sup>ij</sup>'' 's: | * The '''squares of the volumes''' ''V'' and ''V*'' of the direct space and reciprocal space unit cells are respectively equal to the determinants of the ''g<sub>ij</sub>'' 's and the ''g<sup>ij</sup>'' 's: | ||
− | ''V''<sup> 2</sup> = Δ (''g<sub>ij</sub>'') = ''abc''(1 - cos <sup>2</sup> α - cos <sup>2</sup> β - cos<sup>2</sup> γ + 2 cos α cos &# | + | ''V''<sup> 2</sup> = Δ (''g<sub>ij</sub>'') = ''abc''(1 - cos <sup>2</sup> α - cos <sup>2</sup> β - cos<sup>2</sup> γ + 2 cos α cos β cos γ) |
''V*''<sup>2</sup> = Δ (''g<sup>ij</sup>'') = 1/ ''V''<sup> 2</sup>. | ''V*''<sup>2</sup> = Δ (''g<sup>ij</sup>'') = 1/ ''V''<sup> 2</sup>. | ||
Line 94: | Line 95: | ||
== See also == | == See also == | ||
− | *[[ | + | *[[Dual basis]] |
− | *[[ | + | *[[Reciprocal space]] |
− | *[http://www.iucr.org/iucr-top/comm/cteach/pamphlets/10/ Metric Tensor and Symmetry Operations in Crystallography] (Teaching Pamphlet of the | + | *[http://www.iucr.org/iucr-top/comm/cteach/pamphlets/10/ ''Metric Tensor and Symmetry Operations in Crystallography''] (Teaching Pamphlet No. 10 of the International Union of Crystallography) |
− | * | + | *Chapter 1.1.3 of ''International Tables for Crystallography, Volume B'' |
− | * | + | *Chapter 1.1.2 of ''International Tables for Crystallography, Volume D'' |
Revision as of 16:42, 15 May 2017
Tenseur métrique (Fr). Metrischer Tensor (Ge). Tensor métrico (Sp). Tensore metrico (It). Метрический тензор (Ru). 計量テンソル (Ja).
Definition
A metric tensor is used to measure distances in a space. In crystallography the spaces considered are vector spaces with Euclidean metrics, i.e. ones for which the rules of Euclidean geometry apply. In that case, given a basis ei of a Euclidean space, En, the metric tensor is a rank 2 tensor the components of which are:
gij = ei . ej = ej.ei = gji.
It is a symmetrical tensor. Using the metric tensor, the scalar product of two vectors, x = xi ei and y = yj ej is written:
x . y = xi ei . yj ej = gij xi yj.
In a three-dimensional space with basis vectors a, b, c, the coefficients gij of the metric tensor are:
g11 = a2; g12 = a . b; g13 = a . c;
g21 = b . a; g22 = b2; g23 = b . c;
g31 = c . a; g32 = c . b; g33 = c2.
Because the metric tensor is symmetric, g12 = g21, g13 = g31, and g13 = g31. Thus there are only six unique elements, often presented as
g11 g22 g33
g23 g13 g12
or, multiplying the second row by 2, as a so-called G6 ("G" for Gruber) vector
( a2, b2, c2, 2b . c, 2a . c, 2a . b )
The inverse matrix of gij, gij, relates the dual basis, or reciprocal space vectors ei to the direct basis vectors ei, through the relations:
ej = gij ej.
Note that gikgkj = δkj, where δkj is the Kronecker symbol, equal to 0 if i ≠ j, and equal to 1 if i = j.
In three-dimensional space, the dual basis vectors are identical to the reciprocal space vectors and the components of gij are:
g11 = a*2; g12 = a* . b*; g13 = a* . c*;
g21 = b* . a*; g22 = b*2; g23 = b* . c*;
g31 = c* . a*; g32 = c* . b*; g33 = c*2;
with:
g11 = b2c2 sin2 α/ V2; g22 = c2a2 sin2 β/ V2; g33 = a2b2 sin2 γ/ V2;
g12 = g21 = (abc2/ V2)(cos α cos β - cos γ); g23 = g32 = (a2bc/ V2)(cos β cos γ - cos α); g31 = g13 = (ab2c/ V2)(cos γ cos α - cos β)
where V is the volume of the unit cell (a, b, c).
Change of basis
In a change of basis the direct basis vectors and coordinates transform like:
e'j = Aj i ei; x'j = Bi j x i,
where Aj i and Bi j are transformation matrices, transpose of one another. According to their definition, the components gij, of the metric tensor transform like products of basis vectors:
g'kl = AkiAljgij.
They are the doubly covariant components of the metric tensor.
The dual basis vectors and coordinates transform in the change of basis according to:
e'j = Bi j ei; x'j = Aj ixi,
and the components gij transform like products of dual basis vectors:
g'kl = Aik Ajl gij.
They are the doubly contravariant components of the metric tensor.
The mixed components, gij = δij, are once covariant and once contravariant and are invariant.
Properties of the metric tensor
- The tensor nature of the metric tensor is demonstrated by the behaviour of its components in a change of basis. The components gij and gij are the components of a unique tensor.
- The squares of the volumes V and V* of the direct space and reciprocal space unit cells are respectively equal to the determinants of the gij 's and the gij 's:
V 2 = Δ (gij) = abc(1 - cos 2 α - cos 2 β - cos2 γ + 2 cos α cos β cos γ)
V*2 = Δ (gij) = 1/ V 2.
- One changes the variance of a tensor by taking the contracted tensor product of the tensor by the suitable form of the metric tensor. For instance:
gimt ij..kl.. = t j..klm..
Multiplying by the doubly covariant form of the metric tensor increases the covariance by one, multiplying by the doubly contravariant form increases the contravariance by one.
See also
- Dual basis
- Reciprocal space
- Metric Tensor and Symmetry Operations in Crystallography (Teaching Pamphlet No. 10 of the International Union of Crystallography)
- Chapter 1.1.3 of International Tables for Crystallography, Volume B
- Chapter 1.1.2 of International Tables for Crystallography, Volume D