Actions

Difference between revisions of "Lattice"

From Online Dictionary of Crystallography

m (See also: 6th edition of ITA)
m (Style edits to align with printed edition)
Line 1: Line 1:
<Font color="blue">R&eacute;seau</Font>(''Fr''); <Font color="red">Gitter</Font> (''Ge''); <Font color="black">Reticolo</Font>(''It''); <font color="purple">格子</font> (''Ja'').
+
<Font color="blue">R&eacute;seau</Font>(''Fr''). <Font color="red">Gitter</Font> (''Ge''). <Font color="black">Reticolo</Font>(''It''). <font color="purple">格子</font> (''Ja'').
  
 +
A '''lattice''' in the vector space '''V'''<sup>''n''</sup> is the set of all integral linear combinations '''t''' = ''u''<sub>1</sub>'''a<sub>1</sub>''' + ''u''<sub>2</sub>'''a<sub>2</sub>''' + ... + ''u''<sub>k</sub>'''a<sub>k</sub>''' of a system ('''a<sub>1</sub>''', '''a<sub>2</sub>''', ... , '''a<sub>k</sub>''') of linearly independent vectors in '''V'''<sup>''n''</sup>.
  
A '''lattice''' in the vector space '''V<sup>n</sup>''' is the set of all integral linear combinations '''t''' = ''u''<sub>1</sub>'''a<sub>1</sub>''' + ''u''<sub>2</sub>'''a<sub>2</sub>''' + ... + ''u''<sub>k</sub>'''a<sub>k</sub>''' of a system ('''a<sub>1</sub>''', '''a<sub>2</sub>''', ... , '''a<sub>k</sub>''') of linearly independent vectors in '''V<sup>n</sup>'''.
+
If ''k = n'', ''i.e.'' if the linearly independent system is a '''basis''' of '''V'''<sup>''n''</sup>, the lattice is often called a '''full lattice'''. In crystallography, lattices are almost always full lattices, therefore the attribute 'full' is usually suppressed.
 
 
If ''k = n'', i.e. if the linearly independent system is a '''basis''' of '''V<sup>n</sup>''', the lattice is often called a '''full lattice'''. In crystallography, lattices are almost always full lattices, therefore the attribute "full" is usually suppressed.
 
  
 
== See also ==
 
== See also ==
  
*[[crystallographic basis]]<br>
+
*[[Crystallographic basis]]
*Sections 1.3.2 and 3.1 of ''International Tables for Crystallography, Volume A'', 6<sup>th</sup> edition
+
*Chapters 1.3.2 and 3.1 of ''International Tables for Crystallography, Volume A'', 6th edition
  
[[Category:Fundamental crystallography]]<br>
+
[[Category:Fundamental crystallography]]

Revision as of 14:35, 15 May 2017

Réseau(Fr). Gitter (Ge). Reticolo(It). 格子 (Ja).

A lattice in the vector space Vn is the set of all integral linear combinations t = u1a1 + u2a2 + ... + ukak of a system (a1, a2, ... , ak) of linearly independent vectors in Vn.

If k = n, i.e. if the linearly independent system is a basis of Vn, the lattice is often called a full lattice. In crystallography, lattices are almost always full lattices, therefore the attribute 'full' is usually suppressed.

See also

  • Crystallographic basis
  • Chapters 1.3.2 and 3.1 of International Tables for Crystallography, Volume A, 6th edition