Actions

Difference between revisions of "Integral reflection conditions"

From Online Dictionary of Crystallography

m (Style edits to align with printed edition)
m
Line 8: Line 8:
 
<caption align=top> '''Integral reflection conditions for centred lattices.''' </caption>
 
<caption align=top> '''Integral reflection conditions for centred lattices.''' </caption>
 
<tr align=left>
 
<tr align=left>
<th> Reflection<br> condition </th>
+
<th>Reflection<br> condition </th>
<th> Centring type of cell </th>
+
<th>Centring type of cell </th>
 
<th>Centring symbol</th>
 
<th>Centring symbol</th>
 
</tr>
 
</tr>

Revision as of 16:07, 16 May 2017

Conditions de réflexion intégrales (Fr).

Definition

The integral reflections are the general reflection conditions due to the centring of cells. They are given in the table below:

Integral reflection conditions for centred lattices.
Reflection
condition
Centring type of cell Centring symbol
None Primitive P
R (rhombohedral axes)
h + k = 2n C-face centred C
k + l = 2n A-face centred A
l + h = 2n B-face centred B
h + k + l = 2n body centred I
h + k, h + l and

k + l = 2n or:
h, k, l all odd or all

even (‘unmixed’)
all-face centred F
h + k + l = 3n rhombohedrally

centred, obverse

setting (standard)
R (hexagonal axes)
hk + l = 3n rhombohedrally

centred, reverse

setting
hk = 3n hexagonally centred H

See also

  • Chapter 2.1.3.13 of International Tables for Crystallography, Volume A, 6th edition