Difference between revisions of "Lattice"
From Online Dictionary of Crystallography
(initial definition) |
m (Ja) |
||
Line 1: | Line 1: | ||
− | <Font color="blue">Réseau</Font>(''Fr''); <Font color="red">Gitter</Font> (''Ge''); <Font color="black">Reticolo</Font>(''It''). | + | <Font color="blue">Réseau</Font>(''Fr''); <Font color="red">Gitter</Font> (''Ge''); <Font color="black">Reticolo</Font>(''It''); <font color="purple">格子</font> (''Ja''). |
Line 10: | Line 10: | ||
== See also == | == See also == | ||
− | [[crystallographic basis]]<br> | + | *[[crystallographic basis]]<br> |
− | Sections 8.1 and 9.1 of ''International Tables of Crystallography, Volume A'' | + | *Sections 8.1 and 9.1 of ''International Tables of Crystallography, Volume A'' |
---- | ---- | ||
[[Category:Fundamental crystallography]]<br> | [[Category:Fundamental crystallography]]<br> |
Revision as of 14:02, 2 April 2009
Réseau(Fr); Gitter (Ge); Reticolo(It); 格子 (Ja).
Definition
A lattice in the vector space Vn is the set of all integral linear combinations t = u1a1 + u2a2 + ... + ukak of a system (a1, a2, ... , ak) of linearly independent vectors in Vn.
If k = n, i.e. if the linearly independent system is a basis of Vn, the lattice is often called a full lattice. In crystallography, lattices are almost always full lattices, therefore the attribute "full" is usually suppressed.
See also
- crystallographic basis
- Sections 8.1 and 9.1 of International Tables of Crystallography, Volume A