Actions

Difference between revisions of "Displacive modulation"

From Online Dictionary of Crystallography

m
(cat)
Line 16: Line 16:
  
 
<math>r(n,j)_{\alpha}~=~ n_{\alpha}+ r_{j\alpha}+A_{j\alpha} \sin \left(2\pi i  q. n+ r_j)+\phi_{j\alpha}\right),  (\alpha=x,y,z).</math>
 
<math>r(n,j)_{\alpha}~=~ n_{\alpha}+ r_{j\alpha}+A_{j\alpha} \sin \left(2\pi i  q. n+ r_j)+\phi_{j\alpha}\right),  (\alpha=x,y,z).</math>
 +
 +
 +
[[Category: Fundamental crystallography]]

Revision as of 07:55, 26 February 2015

Modulation displacive (Fr.)

For a displacively modulated crystal phase, the positions of the atoms are displaced from those of a basis structure with space group symmetry (an ordinary crystal). The displacements are given by the atomic modulation function uj(r), where j indicates the jth atom in the unit cell of the basic structure.

[math] r( n,j)~=~ n+ r_j+ u_j( n+ r_j).[/math]

The modulation function has a Fourier expansion

[math] u_j( r)~=~\sum_ k \hat{ u}( k) \exp (2\pi i k. r),~with~ k=\sum_{i=1}^n h_i a_i^*,[/math]

with finite value of n. If n=1, the modulated structure is one-dimensionally modulated. A special case of a one-dimensionally modulated structure is

[math]r(n,j)_{\alpha}~=~ n_{\alpha}+ r_{j\alpha}+A_{j\alpha} \sin \left(2\pi i q. n+ r_j)+\phi_{j\alpha}\right), (\alpha=x,y,z).[/math]