Difference between revisions of "Mapping"
From Online Dictionary of Crystallography
BrianMcMahon (talk | contribs) m (Style edits to align with printed edition) |
BrianMcMahon (talk | contribs) m |
||
Line 1: | Line 1: | ||
− | <Font color="blue">Transformation </Font>('' | + | <Font color="blue">Transformation </Font>(''Fr''). <Font color="black">Trasformazione </Font>(''It''). <Font color="purple">写像</Font>(''Ja''). |
Revision as of 09:21, 21 May 2017
Transformation (Fr). Trasformazione (It). 写像(Ja).
The term mapping is often used in mathematics as a synonym of function. In crystallography it is particularly used to indicate a transformation.
Domain, image and codomain
A mapping f of X to Y (f : X → Y) assigns to each element x in the domain X a value y in the codomain Y.The set of values f(X) = { f(x) : x in X } is the image of the mapping. The image may be the whole codomain or a proper subset of it.
For an element y in the image of f, the set { x in X : f(x) = y } of elements mapped to y is called the preimage of y, denoted by f−1{y}. Also, the single elements in f−1{y} are called preimages of x.
Surjective, injective and bijective mappings
The mapping f is surjective (onto) if the image coincides with the codomain. The mapping may be many-to-one because more than one element of the domain X can be mapped to the same element of the codomain Y, but every element of Y has a preimage in X. A surjective mapping is a surjection.
If the codomain of an injective mapping f is restricted to the image f(X), the resulting mapping is a bijection from X to f(X).