Lattice
From Online Dictionary of Crystallography
Revision as of 15:45, 6 February 2012 by BrianMcMahon (talk | contribs)
Revision as of 15:45, 6 February 2012 by BrianMcMahon (talk | contribs)
Réseau(Fr); Gitter (Ge); Reticolo(It); 格子 (Ja).
A lattice in the vector space Vn is the set of all integral linear combinations t = u1a1 + u2a2 + ... + ukak of a system (a1, a2, ... , ak) of linearly independent vectors in Vn.
If k = n, i.e. if the linearly independent system is a basis of Vn, the lattice is often called a full lattice. In crystallography, lattices are almost always full lattices, therefore the attribute "full" is usually suppressed.
See also
- crystallographic basis
- Sections 8.1 and 9.1 of International Tables for Crystallography, Volume A