Spherical system
From Online Dictionary of Crystallography
Revision as of 11:00, 17 May 2017 by BrianMcMahon (talk | contribs) (Style edits to align with printed edition)
Revision as of 11:00, 17 May 2017 by BrianMcMahon (talk | contribs) (Style edits to align with printed edition)
Système sphérique (Fr). Sistema sferico (It).
Definition
The spherical system contains non-crystallographic point groups with more than one axis of revolution. These groups therefore contain an infinity of axes of revolution (or isotropy axis). There are two groups in the spherical system:
Hermann-Mauguin symbol | Short Hermann-Mauguin symbol | Schönflies symbol | Order of the group | General form |
---|---|---|---|---|
[math] \infty A_\infty[/math] | [math]2\infty[/math] | K | [math] \infty[/math] | sphere filled with an optically active liquid |
[math] \infty {A_\infty \over M}C[/math] | [math] m {\bar \infty}[/math], [math]{2\over m}{\bar \infty} [/math] | Kh | [math] \infty[/math] | stationary sphere |
History
The groups containing isotropy axes were introduced by P. Curie (1859-1906) in order to describe the symmetry of physical systems [Curie, P. (1884). Bull. Soc. Fr. Minéral., 7, 89-110. Sur les questions d'ordre: répétitions; Curie, P. (1894). J. Phys. (Paris), 3, 393-415. Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique].
See also
- Curie laws
- Cylindrical system
- Chapter 3.2.1.4 of International Tables for Crystallography, Volume A, 6th edition
- Chapter 1.1.4 of International Tables for Crystallography, Volume D