Pseudo symmetry
From Online Dictionary of Crystallography
Revision as of 13:34, 16 May 2017 by BrianMcMahon (talk | contribs) (Style edits to align with printed edition)
Pseudo symétrie (Fr). Pseudo simmetria (It). 擬対称 (Ja).
A crystal space can in general be divided in N components S1 to SN. When a coincidence operation φ(Si)→Sj brings the ith component Si to coincide with the jth component Sj, for any i and j, φ is a symmetry operation of the space group.
Sometimes, φ brings Si close to, but not exactly on, the position and orientation of Sj; in this case the operation mapping Si onto Sj is not crystallographic but the linear and/or rotational deviation from a space group operation is limited. For this reason, it is preferable to describe the crystallographic operation φ as a pseudo symmetry operation.
Pseudo symmetry operations for the lattice play an important role in twinning, namely in the case of twinning by pseudomerohedry and twinning by reticular pseudomerohedry.