Reduced cell
From Online Dictionary of Crystallography
Revision as of 15:43, 18 December 2017 by MassimoNespolo (talk | contribs) (Created page with "A primitive basis a, b, c is called a ‘reduced basis’ if it is right-handed and if the components of the metric tensor satisfy the conditions below. Because of [[lattice]...")
Revision as of 15:43, 18 December 2017 by MassimoNespolo (talk | contribs) (Created page with "A primitive basis a, b, c is called a ‘reduced basis’ if it is right-handed and if the components of the metric tensor satisfy the conditions below. Because of [[lattice]...")
A primitive basis a, b, c is called a ‘reduced basis’ if it is right-handed and if the components of the metric tensor satisfy the conditions below. Because of lattice symmetry there can be two or more possible orientations of the reduced basis in a given lattice but, apart from orientation, the reduced basis is unique. The type of a cell depends on the sign of
[math]T = (\mathbf{a}\cdot\mathbf{b})(\mathbf{b}\cdot\mathbf{c})(\mathbf{c}\cdot\mathbf{a})[/math].
If T > 0, the cell is of type I, if T ≤ 0 it is of type II.
The conditions for a primitive cell to be a reduced cell can all be stated analytically as follows:
Contents
Type-I cell
Main conditions
- [math]\mathbf{a}\cdot\mathbf{a}[/math] ≤ [math]\mathbf{b}\cdot\mathbf{b}[/math] ≤ [math]\mathbf{c}\cdot\mathbf{c}[/math]
- [math]|\mathbf{b}\cdot\mathbf{c}|[/math] ≤ [math](\mathbf{b}\cdot\mathbf{b})/2[/math]
- [math]|\mathbf{a}\cdot\mathbf{c}|[/math] ≤ [math](\mathbf{a}\cdot\mathbf{a})/2[/math]
- [math]|\mathbf{a}\cdot\mathbf{b}|[/math] ≤ [math](\mathbf{a}\cdot\mathbf{a})/2[/math]
- [math]\mathbf{b}\cdot\mathbf{c} \gt 0[/math]
- [math]\mathbf{a}\cdot\mathbf{c} \gt 0[/math]
- [math]\mathbf{a}\cdot\mathbf{b} \gt 0[/math]
Special conditions
- if [math]\mathbf{a}\cdot\mathbf{a} = \mathbf{b}\cdot\mathbf{b}[/math] then [math]\mathbf{b}\cdot\mathbf{c}[/math] ≤ [math]\mathbf{a}\cdot\mathbf{c}[/math]
- if [math]\mathbf{b}\cdot\mathbf{b} = \mathbf{c}\cdot\mathbf{c}[/math] then [math]\mathbf{a}\cdot\mathbf{c}[/math] ≤ [math]\mathbf{a}\cdot\mathbf{b}[/math]
- if [math]\mathbf{b}\cdot\mathbf{c} = (\mathbf{b}\cdot\mathbf{b})[/math]/2 then [math]\mathbf{a}\cdot\mathbf{b}[/math] ≤ [math]2\mathbf{a}\cdot\mathbf{c}[/math]
- if [math] \mathbf{a}\cdot\mathbf{c} = (\mathbf{a}\cdot\mathbf{a})[/math]/2 then [math]\mathbf{a}\cdot\mathbf{b}[/math] ≤ [math]2\mathbf{b}\cdot\mathbf{c}[/math]
- if [math] \mathbf{a}\cdot\mathbf{b} = (\mathbf{a}\cdot\mathbf{a})[/math]/2 then [math]\mathbf{a}\cdot\mathbf{c}[/math] ≤ [math]2\mathbf{b}\cdot\mathbf{c}[/math]
Type-II cell
Main conditions
- [math]\mathbf{a}\cdot\mathbf{a}[/math] ≤ [math]\mathbf{b}\cdot\mathbf{b}[/math] ≤ [math]\mathbf{c}\cdot\mathbf{c}[/math]
- [math]|\mathbf{b}\cdot\mathbf{c}|[/math] ≤ [math](\mathbf{b}\cdot\mathbf{b})/2[/math]
- [math]|\mathbf{a}\cdot\mathbf{c}|[/math] ≤ [math](\mathbf{a}\cdot\mathbf{a})/2[/math]
- [math]|\mathbf{a}\cdot\mathbf{b}|[/math] ≤ [math](\mathbf{a}\cdot\mathbf{a})/2[/math]
- [math](|\mathbf{b}\cdot\mathbf{c}|+ |\mathbf{a}\cdot\mathbf{c}|+|\mathbf{a}\cdot\mathbf{b}|)[/math] ≤ [math](\mathbf{a}\cdot\mathbf{a}+\mathbf{b}\cdot\mathbf{b})/2[/math]
- [math]\mathbf{b}\cdot\mathbf{c}[/math] ≤ 0
- [math]\mathbf{a}\cdot\mathbf{c}[/math] ≤ 0
- [math]\mathbf{a}\cdot\mathbf{b}[/math] ≤ 0
Special conditions
- if [math]\mathbf{a}\cdot\mathbf{a} = \mathbf{b}\cdot\mathbf{b}[/math] then [math]|\mathbf{b}\cdot\mathbf{c}|[/math] ≤ [math]|\mathbf{a}\cdot\mathbf{c}|[/math]
- if [math]\mathbf{b}\cdot\mathbf{b} = \mathbf{c}\cdot\mathbf{c}[/math] then [math]|\mathbf{a}\cdot\mathbf{c}|[/math] ≤ [math]|\mathbf{a}\cdot\mathbf{b}|[/math]
- if [math]|\mathbf{b}\cdot\mathbf{c}| = (\mathbf{b}\cdot\mathbf{b})/2[/math] then [math]\mathbf{a}\cdot\mathbf{b} = 0[/math]
- if [math]|\mathbf{a}\cdot\mathbf{c}| = (\mathbf{a}\cdot\mathbf{a})[/math]/2 then [math]\mathbf{a}\cdot\mathbf{b} = 0[/math]
- if [math]\mathbf{a}\cdot\mathbf{b} = (\mathbf{a}\cdot\mathbf{a})[/math]/2 then [math]\mathbf{a}\cdot\mathbf{c} = 0[/math]
- if [math](|\mathbf{b}\cdot\mathbf{c}|+ |\mathbf{a}\cdot\mathbf{c}|+|\mathbf{a}\cdot\mathbf{b}|) = (\mathbf{a}\cdot\mathbf{a}+\mathbf{b}\cdot\mathbf{b})/2[/math] then [math]\mathbf{a}\cdot\mathbf{a}[/math] ≤ [math]2|\mathbf{a}\cdot\mathbf{c}|+ |\mathbf{a}\cdot\mathbf{b}|[/math]