Reduced cell
From Online Dictionary of Crystallography
Maille réduite (Fr). Cella ridotta (It). 既約単位胞 (Ja).
A primitive basis a, b, c is called a reduced basis if it is right-handed and if the components of the metric tensor satisfy the conditions below. Because of lattice symmetry there can be two or more possible orientations of the reduced basis in a given lattice but, apart from orientation, the reduced basis is unique.
The type of a cell depends on the sign of
T = (\mathbf{a}\cdot\mathbf{b})(\mathbf{b}\cdot\mathbf{c})(\mathbf{c}\cdot\mathbf{a}).
If T > 0, the cell is of type I, if T ≤ 0 it is of type II.
The conditions for a primitive cell to be a reduced cell can all be stated analytically as follows.
Contents
[hide]Type-I cell
Main conditions
- \mathbf{a}\cdot\mathbf{a} ≤ \mathbf{b}\cdot\mathbf{b} ≤ \mathbf{c}\cdot\mathbf{c}
- |\mathbf{b}\cdot\mathbf{c}| ≤ (\mathbf{b}\cdot\mathbf{b})/2
- |\mathbf{a}\cdot\mathbf{c}| ≤ (\mathbf{a}\cdot\mathbf{a})/2
- |\mathbf{a}\cdot\mathbf{b}| ≤ (\mathbf{a}\cdot\mathbf{a})/2
- \mathbf{b}\cdot\mathbf{c} \gt 0
- \mathbf{a}\cdot\mathbf{c} \gt 0
- \mathbf{a}\cdot\mathbf{b} \gt 0
Special conditions
- if \mathbf{a}\cdot\mathbf{a} = \mathbf{b}\cdot\mathbf{b} then \mathbf{b}\cdot\mathbf{c} ≤ \mathbf{a}\cdot\mathbf{c}
- if \mathbf{b}\cdot\mathbf{b} = \mathbf{c}\cdot\mathbf{c} then \mathbf{a}\cdot\mathbf{c} ≤ \mathbf{a}\cdot\mathbf{b}
- if \mathbf{b}\cdot\mathbf{c} = (\mathbf{b}\cdot\mathbf{b})/2 then \mathbf{a}\cdot\mathbf{b} ≤ 2\mathbf{a}\cdot\mathbf{c}
- if \mathbf{a}\cdot\mathbf{c} = (\mathbf{a}\cdot\mathbf{a})/2 then \mathbf{a}\cdot\mathbf{b} ≤ 2\mathbf{b}\cdot\mathbf{c}
- if \mathbf{a}\cdot\mathbf{b} = (\mathbf{a}\cdot\mathbf{a})/2 then \mathbf{a}\cdot\mathbf{c} ≤ 2\mathbf{b}\cdot\mathbf{c}
Type-II cell
Main conditions
- \mathbf{a}\cdot\mathbf{a} ≤ \mathbf{b}\cdot\mathbf{b} ≤ \mathbf{c}\cdot\mathbf{c}
- |\mathbf{b}\cdot\mathbf{c}| ≤ (\mathbf{b}\cdot\mathbf{b})/2
- |\mathbf{a}\cdot\mathbf{c}| ≤ (\mathbf{a}\cdot\mathbf{a})/2
- |\mathbf{a}\cdot\mathbf{b}| ≤ (\mathbf{a}\cdot\mathbf{a})/2
- (|\mathbf{b}\cdot\mathbf{c}|+ |\mathbf{a}\cdot\mathbf{c}|+|\mathbf{a}\cdot\mathbf{b}|) ≤ (\mathbf{a}\cdot\mathbf{a}+\mathbf{b}\cdot\mathbf{b})/2
- \mathbf{b}\cdot\mathbf{c} ≤ 0
- \mathbf{a}\cdot\mathbf{c} ≤ 0
- \mathbf{a}\cdot\mathbf{b} ≤ 0
Special conditions
- if \mathbf{a}\cdot\mathbf{a} = \mathbf{b}\cdot\mathbf{b} then |\mathbf{b}\cdot\mathbf{c}| ≤ |\mathbf{a}\cdot\mathbf{c}|
- if \mathbf{b}\cdot\mathbf{b} = \mathbf{c}\cdot\mathbf{c} then |\mathbf{a}\cdot\mathbf{c}| ≤ |\mathbf{a}\cdot\mathbf{b}|
- if |\mathbf{b}\cdot\mathbf{c}| = (\mathbf{b}\cdot\mathbf{b})/2 then \mathbf{a}\cdot\mathbf{b} = 0
- if |\mathbf{a}\cdot\mathbf{c}| = (\mathbf{a}\cdot\mathbf{a})/2 then \mathbf{a}\cdot\mathbf{b} = 0
- if \mathbf{a}\cdot\mathbf{b} = (\mathbf{a}\cdot\mathbf{a})/2 then \mathbf{a}\cdot\mathbf{c} = 0
- if (|\mathbf{b}\cdot\mathbf{c}|+ |\mathbf{a}\cdot\mathbf{c}|+|\mathbf{a}\cdot\mathbf{b}|) = (\mathbf{a}\cdot\mathbf{a}+\mathbf{b}\cdot\mathbf{b})/2 then \mathbf{a}\cdot\mathbf{a} ≤ 2|\mathbf{a}\cdot\mathbf{c}|+ |\mathbf{a}\cdot\mathbf{b}|
Geometrical meaning of the reduced cell
The main conditions express the following two requirements:
- Of all lattice vectors, none is shorter than a; of those not directed along a, none is shorter than b; of those not lying in the ab plane, none is shorter than c.
- The three angles between basis vectors are either all acute (type I) or all non-acute (type II).
See also
- Conventional cell
- Crystallographic basis
- Direct lattice
- Unit cell
- Chapter 3.1.3. of International Tables for Crystallography, Volume A, 6th edition