# Friedel's law

### From Online Dictionary of Crystallography

Loi de Friedel (Fr). Friedelsche Gesetz (Ge). Ley de Friedel (Sp).

## Definition

Friedel's law, or rule, states that the intensities of the h, k, l and -h, -k, -l reflections are equal. The reason is that the diffracted intensity is proportional to the the square of the modulus of the structure factor, |Fh|2, according to the geometrical, or kinematical theory. The structure factor is given by:

Fh = Σj fj exp - 2 π i h . rj

where fj is the atomic scattering factor of atom j, h the reflection vector and rj the position vector of atom j. There comes:

|Fh|2 = Fh Fh* = Fh F-h = |F-h|2

if the atomic scattering factor, fj, is real. The intensities of the h, k, l and -h, -k, -l reflections are therefore equal. If the crystal is absorbing, however, due to anomalous dispersion, the atomic scattering factor is complex and

F-h ≠ Fh*.

Friedel's law does not hold for absorbing crystals.

## History

Friedel's law was stated by G. Friedel (1865-1933) in 1913 (Friedel G., 1913, Sur les symétries cristallines que peut révéler la diffraction des rayons X., C.R. Acad. Sci. Paris, 157, 1533-1536.