# Difference between revisions of "Geometric element"

### From Online Dictionary of Crystallography

(more precise defintion for rotoinversions) |
m (slighlty revised Japanese translation) |
||

Line 1: | Line 1: | ||

− | <font color="blue">Élément géométrique</font> (''Fr''); <font color="black">Elemento geometrico</font> (''It''); <font color="purple"> | + | <font color="blue">Élément géométrique</font> (''Fr''); <font color="black">Elemento geometrico</font> (''It''); <font color="purple">幾何的要素</font> (''Ja''). |

A '''geometric element''' is an element in space (plane, line, point, or a combination of these) about which a [[symmetry operation]] is performed. Geometric elements are classified on the basis of the dimensionality N of the space on which they act, the upper limit on the dimensionality of the symmetry element being N-1. | A '''geometric element''' is an element in space (plane, line, point, or a combination of these) about which a [[symmetry operation]] is performed. Geometric elements are classified on the basis of the dimensionality N of the space on which they act, the upper limit on the dimensionality of the symmetry element being N-1. |

## Revision as of 12:27, 5 January 2017

Élément géométrique (*Fr*); Elemento geometrico (*It*); 幾何的要素 (*Ja*).

A **geometric element** is an element in space (plane, line, point, or a combination of these) about which a symmetry operation is performed. Geometric elements are classified on the basis of the dimensionality N of the space on which they act, the upper limit on the dimensionality of the symmetry element being N-1.

## Contents

## One-dimensional space

The only geometric element that exists in this space is the **reflection point** (mirror point).

## Two-dimensional space

In this space, two types of geometric elements exist: zero and one-dimensional:

**rotations points****reflection lines**(mirror lines)

The inversion centre (point) does not exist in spaces of even number of dimensions.

## Three-dimensional space

In this space, three types of geometric elements exist: zero, one- and two-dimensional:

**inversion centres****rotations axes****reflection planes**(mirror planes)

For roto-inversion operations, the geometric element is a combination of a line, about which the rotation is performed, and a point (**inversion point**) with respect to which the inversion is performed.

## See also

## References

Wolff, P. M. de, Billiet, Y., Donnay, J. D. H., Fischer, W., Galiulin, R. B., Glazer, A. M., Senechal, M., Shoemaker, D. P., Wondratschek, H., Hahn, Th., Wilson, A. J. C. & Abrahams, S. C. (1989). Definition of symmetry elements in space groups and point groups. Report of the International Union of Crystallography Ad-hoc Committee on the Nomenclature of Symmetry. *Acta Cryst.*,** A 45**, 494−499.