Actions

Difference between revisions of "Metric tensor"

From Online Dictionary of Crystallography

(Definition)
Line 28: Line 28:
 
In three-dimensional space, the dual basis vectors are identical to the [[reciprocal space]] vectors and the components of ''g<sup>ij</sup>'' are:
 
In three-dimensional space, the dual basis vectors are identical to the [[reciprocal space]] vectors and the components of ''g<sup>ij</sup>'' are:
  
''g^11^'' = '''a*^2^'''; ''g^12^'' = '''a* . b*'''; ''g^13^'' = '''a* . c*''';[[BR]]
+
''g<sup>11</sup>'' = '''a*<sup>2</sup>'''; ''g<sup>12</sup>'' = '''a* . b*'''; ''g<sup>13</sup>'' = '''a* . c*''';<br>
''g^21^'' = '''b* . a*'''; ''g^22^'' = '''b*^2^'''; ''g^23^'' = '''b* . c*''';[[BR]]
+
''g<sup>21</sup>'' = '''b* . a*'''; ''g<sup>22</sup>'' = '''b*<sup>2</sup>'''; ''g<sup>23</sup>'' = '''b* . c*''';<br>
''g^31^'' = '''c* . a*'''; ''g^32^'' = '''c* . b*'''; ''g^33^'' = '''c*^2^''';[[BR]]
+
''g<sup>31</sup>'' = '''c* . a*'''; ''g<sup>32</sup>'' = '''c* . b*'''; ''g<sup>33</sup>'' = '''c*<sup>2</sup>''';
  
 
with:
 
with:
  
''g^11^'' =  ''b''^2^''c''^2^ sin^2^ &#945;/ V^2^;
+
''g<sup>11</sup>'' =  ''b''<sup>2</sup>''c''<sup>2</sup> sin<sup>2</sup> &#945;/ V<sup>2</sup>;
''g^22^'' =  ''c''^2^''a''^2^ sin^2^ &#946;/ V^2^;
+
''g<sup>22</sup>'' =  ''c''<sup>2</sup>''a''<sup>2</sup> sin<sup>2</sup> &#946;/ V<sup>2</sup>;
''g^33^'' =  ''a''^2^''b''^2^ sin^2^ &#947;/ V^2^;[[BR]]
+
''g<sup>33</sup>'' =  ''a''<sup>2</sup>''b''<sup>2</sup> sin<sup>2</sup> &#947;/ V<sup>2</sup>;
  
''g^12^'' = ''g^21^'' = (''abc''^2^/ V^2^)(cos &#945; cos &#946; - cos &#947;);
+
''g<sup>12</sup>'' = ''g<sup>21</sup>'' = (''abc''<sup>2</sup>/ V<sup>2</sup>)(cos &#945; cos &#946; - cos &#947;);
''g^23^'' = ''g^32^'' = (''a^2^bc''/ V^2^)(cos &#946; cos &#947; - cos &#945;);
+
''g<sup>23</sup>'' = ''g<sup>32</sup>'' = (''a<sup>2</sup>bc''/ V<sup>2</sup>)(cos &#946; cos &#947; - cos &#945;);
''g^31^'' = ''g^13^'' = (''ab^2^c''/ V^2^)(cos &#947; cos &#945; - cos &#946;).
+
''g<sup>31</sup>'' = ''g<sup>13</sup>'' = (''ab<sup>2</sup>c''/ V<sup>2</sup>)(cos &#947; cos &#945; - cos &#946;)
  
where ''V'' is the volume of the unit cell ('''a''', '''b''', '''c''')
+
where ''V'' is the volume of the unit cell ('''a''', '''b''', '''c''').
  
 
== Change of basis ==
 
== Change of basis ==

Revision as of 14:37, 25 January 2006

Metric tensor

Other languages

Tenseur métrique (Fr).

Definition

Given a basis ei of a Euclidean space, En, the metric tensor is a rank 2 tensor the components of which are:

gij = ei . ej = ej.ei = gji.

It is a symmetrical tensor. Using the metric tensor, the scalar product of two vectors, x = xi ei and y = yj ej is written:

x . y = xi ei . yj ej = gij xi yj.

In a three-dimensional space with basis vectors a, b, c, the coefficients gij of the metric tensor are:

g11, = a2; g12 = a . b; g13 = a . c;
g21 = b . a; g22 = b2; g23 = b . c;
g31 = c . a; g32 = c . b; g33 = c2;

The inverse matrix of gij, gij, (gikgkj = δkj, Kronecker symbol, = 0 if ij, = 1 if i = j) relates the dual basis, or reciprocal space vectors ei to the direct basis vectors ei through the relations:

ej = gij ej

In three-dimensional space, the dual basis vectors are identical to the reciprocal space vectors and the components of gij are:

g11 = a*2; g12 = a* . b*; g13 = a* . c*;
g21 = b* . a*; g22 = b*2; g23 = b* . c*;
g31 = c* . a*; g32 = c* . b*; g33 = c*2;

with:

g11 = b2c2 sin2 α/ V2; g22 = c2a2 sin2 β/ V2; g33 = a2b2 sin2 γ/ V2;

g12 = g21 = (abc2/ V2)(cos α cos β - cos γ); g23 = g32 = (a2bc/ V2)(cos β cos γ - cos α); g31 = g13 = (ab2c/ V2)(cos γ cos α - cos β)

where V is the volume of the unit cell (a, b, c).

Change of basis

In a change of basis the direct basis vectors and coordinates transform like:

e',,j,,  = A,,j,, ^i^ e,,i,, ; x'^j^ = B,,i,, ^j^ x^i^,

where A,,j,, ^i^ and B,,i,, ^j^ are transformation matrices, transpose of one another. According to their definition, the components g,,ij,, of the metric tensor transform like products of basis vectors:

g',,kl,, = A,,k,, ^i^A,,l,, ^j^g,,ij,,.

They are the doubly covariant components of the metric tensor.

The ["dual basis"] vectors and coordinates transform in the change of basis according to:

e'^j^  = B,,i,,^j^ e^i^; x',,j,, = A,,j,, ^i^x,,i,,,

and the components g^ij^ transform like products of dual basis vectors:

g'^kl^ = A,,i,,^k^ A,,j^l^ g^ij^.

They are the doubly contravariant components of the metric tensor.

The mixed components, g^i^,,j,, = δ^i^,,j,, , are once covariant and once contravariant and are invariant.

Properties of the metric tensor

* The tensor nature of the metric tensor is demonstrated by the behaviour of its components in a change of basis. The components g,,ij,, and g^ij^ are the components of a unique tensor.
* The squares of the volumes V and V* of the direct space and reciprocal space unit cells are respectively equal to the determinants of the g,,ij,, 's and the g^ij^ 's:
V ^2^ = Δ (g,,ij,,) = abc(1 - cos ^2^ α - cos ^2^ β - cos ^2^ γ + 2 cos α cos α cos α)

V*2 = Δ (gij) = 1/ V 2.

* One changes the variance of a tensor by taking the contracted tensor product of the tensor by the suitable form of the metric tensor. For instance:

g,,im,,t^ij..^,,kl..,, = t^j..^,,klm..,,

Multiplying by the doubly covariant form of the metric tensor increases the covariance by one, multiplying by the doubly contravariant form increases the contravariance by one.


See also

dual basis
reciprocal space

Section 1.1.3 of International Tables of Crystallography, Volume B

Section 1.1.2 of International Tables of Crystallography, Volume D