Difference between revisions of "Pyroelectricity"

From Online Dictionary of Crystallography

m (Style edits to align with printed edition)
(Tidied translations and corrected Spanish (U. Mueller))
Line 1: Line 1:
<Font color="blue"> Pyroélectricité </Font> (''Fr''). <Font color="red"> Pyroelektrizität </Font> (''Ge''). <font color="green">Pyroelectricidad </Font> (''Sp''). <Font color="black"> Piroelettricità </Font>(''It''). <Font color="purple"> 焦電効果 </Font>(''Ja'').
<font color="blue">Pyroélectricité</font> (''Fr''). <font color="red">Pyroelektrizität</font> (''Ge''). <font color="black">Piroelettricità</font> (''It''). <font color="purple">焦電効果</font> (''Ja''). <font color="green">Piroelectricidad</font> (''Sp'').  

Latest revision as of 10:13, 17 November 2017

Pyroélectricité (Fr). Pyroelektrizität (Ge). Piroelettricità (It). 焦電効果 (Ja). Piroelectricidad (Sp).


Pyroelectricity is the property presented by certain materials that exhibit an electric polarization Pi when a temperature variation δΘ is applied uniformly:

Pi = piT δΘ

where piT is the pyroelectric coefficient at constant stress. Pyroelectric crystals actually have a spontaneous polarization, but the pyroelectric effect can only be observed during a temperature change. If the polarization can be reversed by the application of an electric field, the crystal is ferroelectric.

If the crystal is also piezoelectric, the polarization due to an applied temperature variation is also partly due to the piezoelectric effect. The coefficient describing the pure pyroelectric effect is the pyroelectric coefficient at constant strain, piS. The two coefficients are related by:

piT = cijkldklnαjn + piS

where the cijkl are the elastic stiffnesses, the dkln the piezoelectric coefficients and the αjn the linear thermal expansion coefficients.

The converse effect is the electrocaloric effect. If a pyroelectric crystal is submitted to an electric field, it will undergo a change of entropy Δσ:

Δσ = pi Ei

and will release or absorb a quantity of heat given by Θ V Δσ where Θ is the temperature of the specimen and V its volume.

Pyroelectric point groups

The geometric crystal classes for which the piezoelectric effect is possible are determined by symmetry considerations (see Curie laws). They are the classes of which the symmetry is a subgroup of the symmetry associated with that of the electric field, AM:

1, 2, 3, 4, 6, m, 2mm, 3m, 4mm, 6mm


The appearance of electrostatic charges upon changes of temperature has been observed since ancient times, in particular on tourmaline and was described, among others, by Steno, Aepinus and Haüy. It was Sir David Brewster (1781-1788) who coined the term 'pyroelectricity' [Brewster, D. (1824). Edinburgh. J. Sci., 1, 208-215, Observations on the pyroelectricity of minerals, translated into German, Poggendorf Ann. Phys. (1824). 2, 297-307, Beobachtungen über die, in den Mineralien, durch Wärme erregte Electrizität].

See also

  • An introduction to crystal physics (Teaching Pamphlet No. 18 of the International Union of Crystallography)
  • Chapter of International Tables for Crystallography, Volume A, 6th edition
  • Chapter 1.1.4 and Part 3 of International Tables for Crystallography, Volume D