# Difference between revisions of "Spherical system"

### From Online Dictionary of Crystallography

BrianMcMahon (talk | contribs) m (Tidied translations.) |
BrianMcMahon (talk | contribs) m (Tidied translations.) |
||

Line 1: | Line 1: | ||

− | <font color="blue">Système sphérique</font> (''Fr''). <font color="black">Sistema sferico </font> (''It''). | + | <font color="blue">Système sphérique</font> (''Fr''). <font color="black">Sistema sferico</font> (''It''). |

## Latest revision as of 11:40, 15 December 2017

Système sphérique (*Fr*). Sistema sferico (*It*).

## Definition

The spherical system contains non-crystallographic point groups with more than one axis of revolution. These groups therefore contain an infinity of axes of revolution (or isotropy axis). There are two groups in the spherical system:

Hermann-Mauguin symbol | Short Hermann-Mauguin symbol | Schönflies symbol | Order of the group | General form |
---|---|---|---|---|

[math] \infty A_\infty[/math] | [math]2\infty[/math] | K | [math] \infty[/math] | sphere filled with an optically active liquid |

[math] \infty {A_\infty \over M}C[/math] | [math] m {\bar \infty}[/math], [math]{2\over m}{\bar \infty} [/math] | K_{h} | [math] \infty[/math] | stationary sphere |

## History

The groups containing isotropy axes were introduced by P. Curie (1859-1906) in order to describe the symmetry of physical systems [Curie, P. (1884). *Bull. Soc. Fr. Minéral.*, **7**, 89-110. *Sur les questions d'ordre: répétitions*; Curie, P. (1894). *J. Phys. (Paris)*, **3**, 393-415. *Sur la symétrie dans les phénomènes physiques, symétrie d’un champ électrique et d’un champ magnétique*].

## See also

- Curie laws
- Cylindrical system
- Chapter 3.2.1.4 of
*International Tables for Crystallography, Volume A*, 6th edition - Chapter 1.1.4 of
*International Tables for Crystallography, Volume D*