Actions

Difference between revisions of "Twinning by pseudomerohedry"

From Online Dictionary of Crystallography

(Tidied translations and added German (U. Mueller))
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<Font color="blue"> Maclage par pseudomériédrie </Font> (''Fr''). <Font color="black"> Geminazione per pseudomeroedria</Font>(''It'')
+
<font color="blue">Maclage par pseudomériédrie</font> (''Fr''). <font color="red">Pseudomeroedrische Verzwillingung</font> (''Ge''). <font color="black">Geminazione per pseudomeroedria</font> (''It''). <font color="purple">擬欠面双晶</font> (''Ja''). <font color="green">Macla por seudomeroedría</font> (''Sp'').
  
  
= [[Twinning]] by pseudomerohedry =
+
A lattice is said to be pseudosymmetric if at least a lattice row or/and a lattice plane approximately correspond to elements of symmetry; these elements can act as twinning operators (''e.g.'' a monoclinic lattice with its oblique angle ''close'' to 90° is pseudo-orthorhombic and thus shows two pseudo twofold axes and two pseudo mirror planes).
  
A lattice is said to be pseudosymmetric if at least a lattice row or/and a lattice plane approximately correspond to elements of symmetry; these elements can act as twinning operators (e.g., a monoclinic lattice with its oblique angle ''close'' to 90° is pseudo-orthorhombic and thus shows two pseudo twofold axes and two pseudo mirror planes).
+
== See also ==
 +
*Chapter 3.3 of ''International Tables for Crystallography, Volume D''
  
Chapter 3.3 of ''International Tables of Crystallography, Volume D''<br>
+
[[Category:Twinning]]
 
 
[[Category:Fundamental crystallography]]
 

Latest revision as of 14:32, 20 November 2017

Maclage par pseudomériédrie (Fr). Pseudomeroedrische Verzwillingung (Ge). Geminazione per pseudomeroedria (It). 擬欠面双晶 (Ja). Macla por seudomeroedría (Sp).


A lattice is said to be pseudosymmetric if at least a lattice row or/and a lattice plane approximately correspond to elements of symmetry; these elements can act as twinning operators (e.g. a monoclinic lattice with its oblique angle close to 90° is pseudo-orthorhombic and thus shows two pseudo twofold axes and two pseudo mirror planes).

See also

  • Chapter 3.3 of International Tables for Crystallography, Volume D