Actions

Difference between revisions of "Twinning by reticular merohedry"

From Online Dictionary of Crystallography

(Added German and Spanish translations (U. Mueller))
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<Font color="blue"> Maclage par mériédrie réticulaire </Font> (''Fr'').  <Font color="black"> Geminazione per meroedria reticolare</Font>(''It'')
+
<font color="blue">Maclage par mériédrie réticulaire</font> (''Fr'').  <font color="red">Verzwillingung durch reticulare Meroedrie</font> (''Ge''). <font color="black">Geminazione per meroedria reticolare</font> (''It''). <font color="green">Macla por meroedría reticular</font> (''Sp'').
  
  
 
= [[Twinning]] by reticular merohedry =
 
= [[Twinning]] by reticular merohedry =
  
In the presence of a sublattice whose oriented [[point group]] D('''L'''<sub>T</sub>) differs from that of the crystal (individual) lattice D('''L'''<sub>ind</sub>), a symmetry element belonging to D('''L'''<sub>T</sub>) but not to D('''L'''<sub>ind</sub>) can act as [[twin element]].  
+
In the presence of a sublattice whose oriented [[point group]] ''D''('''L'''<sub>''T''</sub>) differs from that of the crystal (individual) lattice ''D''('''L'''<sub>''ind''</sub>), a symmetry element belonging to ''D''('''L'''<sub>''T''</sub>) but not to ''D''('''L'''<sub>''ind''</sub>) can act as [[twin element]].  
  
 
If lattice and sublattice have the same point group but (some of) their symmetry elements are differently oriented, ''[[twinning by reticular polyholohedry]]'' can occur.
 
If lattice and sublattice have the same point group but (some of) their symmetry elements are differently oriented, ''[[twinning by reticular polyholohedry]]'' can occur.
 
==Related articles==
 
[[Twin lattice]]
 
  
 
==See also==
 
==See also==
Chapter 3.3 of ''International Tables of Crystallography, Volume D''<br>
+
*[[Twin lattice]]
 +
*Chapter 3.3 of ''International Tables for Crystallography, Volume D''
  
 
[[Category:Twinning]]
 
[[Category:Twinning]]

Latest revision as of 14:34, 20 November 2017

Maclage par mériédrie réticulaire (Fr). Verzwillingung durch reticulare Meroedrie (Ge). Geminazione per meroedria reticolare (It). Macla por meroedría reticular (Sp).


Twinning by reticular merohedry

In the presence of a sublattice whose oriented point group D(LT) differs from that of the crystal (individual) lattice D(Lind), a symmetry element belonging to D(LT) but not to D(Lind) can act as twin element.

If lattice and sublattice have the same point group but (some of) their symmetry elements are differently oriented, twinning by reticular polyholohedry can occur.

See also

  • Twin lattice
  • Chapter 3.3 of International Tables for Crystallography, Volume D