Actions

Difference between revisions of "Twinning by reticular pseudomerohedry"

From Online Dictionary of Crystallography

(Added German and Spanish translations (U. Mueller))
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
<Font color="blue"> Maclage par pseudomériédrie réticulaire </Font> (''Fr''). <Font color="black"> Geminazione per pseudomeroedria reticolare</Font>(''It'')
+
<font color="blue">Maclage par pseudomériédrie réticulaire</font> (''Fr''). <font color="red">Verzwillingung durch reticulare Pseudomeroedie</font> (''Ge''). <font color="black">Geminazione per pseudomeroedria reticolare</font> (''It''). <font color="green">Macla por seudomeroedría reticular</font> (''Sp'').
  
 
= [[Twinning]] by reticular pseudomerohedry =
 
  
 
In the presence of a sublattice displaying pseudosymmetry, a pseudosymmetry element belonging to the sublattice can act as twinning operator. See [[twinning by pseudomerohedry]] and [[twinning by reticular merohedry]].
 
In the presence of a sublattice displaying pseudosymmetry, a pseudosymmetry element belonging to the sublattice can act as twinning operator. See [[twinning by pseudomerohedry]] and [[twinning by reticular merohedry]].
  
Chapter 3.3 of ''International Tables of Crystallography, Volume D''<br>
+
== See also ==
 +
*Chapter 3.3 of ''International Tables for Crystallography, Volume D''
  
 
[[Category:Twinning]]
 
[[Category:Twinning]]

Latest revision as of 14:37, 20 November 2017

Maclage par pseudomériédrie réticulaire (Fr). Verzwillingung durch reticulare Pseudomeroedie (Ge). Geminazione per pseudomeroedria reticolare (It). Macla por seudomeroedría reticular (Sp).


In the presence of a sublattice displaying pseudosymmetry, a pseudosymmetry element belonging to the sublattice can act as twinning operator. See twinning by pseudomerohedry and twinning by reticular merohedry.

See also

  • Chapter 3.3 of International Tables for Crystallography, Volume D