Actions

Difference between revisions of "Group isomorphism"

From Online Dictionary of Crystallography

m (Style edits to align with printed edition)
m
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<Font color="blue">Isomorphisme de groupes</font> (''Fr''). <Font color="red">Gruppenisomorphismus</font> (''Ge''). <Font color="black">Isomorfismo fra gruppi </font> (''It''). <Font color="purple">同形</font> (''Ja'').
+
<font color="orange">جماعه التماثل</font> (''Ar''). <font color="blue">Isomorphisme de groupes</font> (''Fr''). <font color="red">Gruppenisomorphismus</font> (''Ge''). <font color="black">Isomorfismo fra gruppi </font> (''It''). <font color="purple">同形</font> (''Ja''). <font color="brown">Изоморфизм групп</font> (''Ru''). <font color="green">Isomorfismo de grupos</font> (''Sp'').
  
  

Latest revision as of 15:10, 29 August 2018

جماعه التماثل (Ar). Isomorphisme de groupes (Fr). Gruppenisomorphismus (Ge). Isomorfismo fra gruppi (It). 同形 (Ja). Изоморфизм групп (Ru). Isomorfismo de grupos (Sp).


A group isomorphism is a special type of group homomorphism. It is a mapping between two groups that sets up a one-to-one correspondence between the elements of the groups in a way that respects the respective group operations. If there exists an isomorphism between two groups, then the groups are called isomorphic. Isomorphic groups have the same properties and the same structure of their multiplication table.

Let (G, *) and (H, #) be two groups, where '*' and '#' are the binary operations in G and H, respectively. A group isomorphism from (G, *) to (H, #) is a bijection from G to H, i.e. a bijective mapping f : GH such that for all u and v in G one has

f (u * v) = f (u) # f (v).

Two groups (G, *) and (H, #) are isomorphic if an isomorphism between them exists. This is written:

(G, *) [math]\cong[/math] (H, #).

If H = G and the binary operations # and * coincide, the bijection is an automorphism.

See also