Difference between revisions of "Domain of influence"
From Online Dictionary of Crystallography
(→Other languages) |
(lang (Ja), synonyms after languages) |
||
(6 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | = | + | <font color="blue">Domaine d'influence</font> (''Fr''). <font color="red">Wirkungsbereich</font> (''Ge''). <font color="black">Dominio di influenza</font> (''It''). <font color="purple">影響ドメイン</font> (''Ja''). <font color="green">Dominio de influencia, celda de Wigner-Seitz</font> (''Sp''). |
+ | '''Synonyms''': Voronoi domain, Wigner-Seitz cell | ||
− | |||
− | + | The domain of influence of a lattice point ''P'' (Delaunay 1933), or Dirichlet domain or Voronoi domain, consists of all points ''Q'' in space that are closer to this lattice point than to any other lattice point or at most equidistant to it, namely such that '''OP''' ≤|'''t''' - '''OP'''| for any vector '''t''' belonging to the vector lattice ''L''. It is the inside of the [[Wigner-Seitz cell]]. | |
− | |||
− | |||
− | |||
− | The domain of influence of a lattice point ''P'' (Delaunay 1933), or Dirichlet domain or Voronoi domain, consists of all points ''Q'' in space that are closer to this lattice point than to any other lattice point or at most equidistant to it, namely such that '''OP''' ≤|'''t''' - '''OP'''| for | ||
=== See also === | === See also === | ||
− | + | *[[Brillouin_zones|Brillouin zone]] | |
− | + | *[[Wigner-Seitz cell]] | |
− | + | *Chapters 1.3.2.3 and 3.1.2.3 of ''International Tables for Crystallography, Volume A'', 6th edition | |
[[Category:Fundamental crystallography]]<br> | [[Category:Fundamental crystallography]]<br> |
Latest revision as of 03:48, 26 November 2018
Domaine d'influence (Fr). Wirkungsbereich (Ge). Dominio di influenza (It). 影響ドメイン (Ja). Dominio de influencia, celda de Wigner-Seitz (Sp).
Synonyms: Voronoi domain, Wigner-Seitz cell
The domain of influence of a lattice point P (Delaunay 1933), or Dirichlet domain or Voronoi domain, consists of all points Q in space that are closer to this lattice point than to any other lattice point or at most equidistant to it, namely such that OP ≤|t - OP| for any vector t belonging to the vector lattice L. It is the inside of the Wigner-Seitz cell.
See also
- Brillouin zone
- Wigner-Seitz cell
- Chapters 1.3.2.3 and 3.1.2.3 of International Tables for Crystallography, Volume A, 6th edition